node_classification_infer.py 6.1 KB
Newer Older
W
weiyue.su 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import pickle
import time
import glob
import os
import io
import traceback
import pickle as pkl
role = os.getenv("TRAINING_ROLE", "TRAINER")

import numpy as np
import yaml
from easydict import EasyDict as edict
import pgl
from pgl.utils.logger import log
from pgl.utils import paddle_helper
import paddle
import paddle.fluid as F

37 38
from models.model import NodeClassificationModel
from dataset.graph_reader import NodeClassificationGenerator 
W
weiyue.su 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61


class PredictData(object):
    def __init__(self, num_nodes):
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        trainer_count = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
        train_usr = np.arange(trainer_id, num_nodes, trainer_count)
        #self.data = (train_usr, train_usr)
        self.data = train_usr

    def __getitem__(self, index):
        return [self.data[index], self.data[index]]

def tostr(data_array):
    return " ".join(["%.5lf" % d for d in  data_array])

def run_predict(py_reader,
              exe,
              program,
              model_dict,
              log_per_step=1,
              args=None):

S
suweiyue 已提交
62
    id2str = io.open(os.path.join(args.graph_work_path, "terms.txt"), encoding=args.encoding).readlines()
W
weiyue.su 已提交
63 64 65 66 67 68 69 70 71 72 73

    trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
    trainer_count = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
    if not os.path.exists(args.output_path):
        os.mkdir(args.output_path)

    fout = io.open("%s/part-%s" % (args.output_path, trainer_id), "w", encoding="utf8")
    batch = 0
        
    for batch_feed_dict in py_reader():
        batch += 1
74
        _, batch_node_real_index, batch_logits = exe.run(
W
weiyue.su 已提交
75 76 77 78 79 80 81
            program,
            feed=batch_feed_dict,
            fetch_list=model_dict.outputs)

        if batch % log_per_step == 0:
            log.info("Predict %s finished" % batch)

82
        for idx, logits in zip(batch_node_real_index, batch_logits):
W
weiyue.su 已提交
83
            if args.input_type == "text":
84 85 86 87
                text = id2str[int(idx)].strip("\n").split("\t")[-1]
            #prediction = np.argmax(logits)
            prediction = logits[1]
            line = "{}\t{}\n".format(text, prediction)
W
weiyue.su 已提交
88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112
            fout.write(line)

    fout.close()

def _warmstart(exe, program, path='params'):
    def _existed_persitables(var):
        #if not isinstance(var, fluid.framework.Parameter):
        #    return False
        if not F.io.is_persistable(var):
            return False
        param_path = os.path.join(path, var.name)
        log.info("Loading parameter: {} persistable: {} exists: {}".format(
            param_path,
            F.io.is_persistable(var),
            os.path.exists(param_path),
        ))
        return os.path.exists(param_path)
    F.io.load_vars(
        exe,
        path,
        main_program=program,
        predicate=_existed_persitables
    )

def main(config):
113
    model = NodeClassificationModel(config)
W
weiyue.su 已提交
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147

    if config.learner_type == "cpu":
        place = F.CPUPlace()
    elif config.learner_type == "gpu":
        gpu_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = F.CUDAPlace(gpu_id)
    else:
        raise ValueError

    exe = F.Executor(place)

    val_program = F.default_main_program().clone(for_test=True)
    exe.run(F.default_startup_program()) 
    _warmstart(exe, F.default_startup_program(), path=config.infer_model)

    num_threads = int(os.getenv("CPU_NUM", 1))
    trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0))

    exec_strategy = F.ExecutionStrategy()
    exec_strategy.num_threads = num_threads
    build_strategy = F.BuildStrategy()
    build_strategy.enable_inplace = True
    build_strategy.memory_optimize = True
    build_strategy.remove_unnecessary_lock = False
    build_strategy.memory_optimize = False

    if num_threads > 1:
        build_strategy.reduce_strategy = F.BuildStrategy.ReduceStrategy.Reduce

    val_compiled_prog = F.compiler.CompiledProgram(
        val_program).with_data_parallel(
            build_strategy=build_strategy,
            exec_strategy=exec_strategy)

S
suweiyue 已提交
148
    num_nodes = int(np.load(os.path.join(config.graph_work_path, "num_nodes.npy")))
W
weiyue.su 已提交
149 150 151

    predict_data = PredictData(num_nodes)

152
    predict_iter = NodeClassificationGenerator(
W
weiyue.su 已提交
153 154 155 156 157 158 159 160
        graph_wrappers=model.graph_wrappers,
        batch_size=config.infer_batch_size,
        data=predict_data,
        samples=config.samples,
        num_workers=config.sample_workers,
        feed_name_list=[var.name for var in model.feed_list],
        use_pyreader=config.use_pyreader,
        phase="predict",
S
suweiyue 已提交
161
        graph_data_path=config.graph_work_path,
W
weiyue.su 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188
        shuffle=False)

    if config.learner_type == "cpu":
        model.data_loader.decorate_batch_generator(
            predict_iter, places=F.cpu_places())
    elif config.learner_type == "gpu":
        gpu_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = F.CUDAPlace(gpu_id)
        model.data_loader.decorate_batch_generator(
            predict_iter, places=place)
    else:
        raise ValueError

    run_predict(model.data_loader,
                program=val_compiled_prog,
                exe=exe,
                model_dict=model,
                args=config)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='main')
    parser.add_argument("--conf", type=str, default="./config.yaml")
    args = parser.parse_args()
    config = edict(yaml.load(open(args.conf), Loader=yaml.FullLoader))
    print(config)
    main(config)