dataloader.py 8.4 KB
Newer Older
W
Webbley 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
#-*- coding: utf-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""dataloader
"""
W
Webbley 已提交
17
import warnings
W
Webbley 已提交
18
import numpy as np
W
Webbley 已提交
19
from collections import namedtuple
W
Webbley 已提交
20 21 22 23 24 25 26 27 28

import paddle
import paddle.fluid as F
import paddle.fluid.layers as L

from pgl.utils import mp_reader
from pgl.utils.data.dataset import Dataset, StreamDataset
from pgl.utils.data.sampler import Sampler, StreamSampler

W
Webbley 已提交
29 30
WorkerInfo = namedtuple("WorkerInfo", ["num_workers", "fid"])

W
Webbley 已提交
31 32

class Dataloader(object):
W
Webbley 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
    """Dataloader for loading batch data

    Example:
        .. code-block:: python
            from pgl.utils.data import Dataset
            from pgl.utils.data.dataloader import Dataloader

            class MyDataset(Dataset):
                def __init__(self):
                    self.data = list(range(0, 40))

                def __getitem__(self, idx):
                    return self.data[idx]

                def __len__(self):
                    return len(self.data)

            def collate_fn(batch_examples):
                feed_dict = {}
                feed_dict['data'] = batch_examples
                return feed_dict

            dataset = MyDataset()
            loader = Dataloader(dataset, 
                                batch_size=3,
                                drop_last=False,
                                shuffle=True,
                                num_workers=4,
                                collate_fn=collate_fn)

            for batch_data in loader:
                print(batch_data)
W
Webbley 已提交
65 66
    """

W
Webbley 已提交
67 68 69 70 71 72 73 74 75
    def __init__(self,
                 dataset,
                 batch_size=1,
                 drop_last=False,
                 shuffle=False,
                 num_workers=1,
                 collate_fn=None,
                 buf_size=1000,
                 stream_shuffle_size=0):
W
Webbley 已提交
76 77 78 79 80 81 82 83

        self.dataset = dataset
        self.batch_size = batch_size
        self.shuffle = shuffle
        self.num_workers = num_workers
        self.collate_fn = collate_fn
        self.buf_size = buf_size
        self.drop_last = drop_last
W
Webbley 已提交
84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
        self.stream_shuffle_size = stream_shuffle_size

        if self.shuffle and isinstance(self.dataset, StreamDataset):
            warn_msg = "[shuffle] should not be True with StreamDataset. " \
                    "It will be ignored. " \
                    "You might want to set [stream_shuffle_size] with StreamDataset."
            warnings.warn(warn_msg)

        if self.stream_shuffle_size > 0 and self.batch_size >= stream_shuffle_size:
            raise ValueError("stream_shuffle_size must be larger than batch_size," \
                    "but got [stream_shuffle_size=%s] smaller than [batch_size=%s]" \
                    % (self.stream_shuffle_size, self.batch_size))

        if self.num_workers < 1:
            raise ValueError("num_workers(default: 1) should be larger than 0, " \
                        "but got [num_workers=%s] < 1." % self.num_workers)
W
Webbley 已提交
100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138

    def __len__(self):
        if not isinstance(self.dataset, StreamDataset):
            return len(self.sampler)
        else:
            raise "StreamDataset has no length"

    def __iter__(self):
        # generating a iterable sequence for produce batch data without repetition
        if isinstance(self.dataset, StreamDataset):  # for stream data
            self.sampler = StreamSampler(
                self.dataset,
                batch_size=self.batch_size,
                drop_last=self.drop_last)
        else:
            self.sampler = Sampler(
                self.dataset,
                batch_size=self.batch_size,
                drop_last=self.drop_last,
                shuffle=self.shuffle)

        if self.num_workers == 1:
            r = paddle.reader.buffered(_DataLoaderIter(self, 0), self.buf_size)
        else:
            worker_pool = [
                _DataLoaderIter(self, wid) for wid in range(self.num_workers)
            ]
            workers = mp_reader.multiprocess_reader(
                worker_pool, use_pipe=True, queue_size=1000)
            r = paddle.reader.buffered(workers, self.buf_size)

        for batch in r():
            yield batch

    def __call__(self):
        return self.__iter__()


class _DataLoaderIter(object):
W
Webbley 已提交
139 140 141
    """Iterable DataLoader Object
    """

W
Webbley 已提交
142 143 144 145 146 147
    def __init__(self, dataloader, fid=0):
        self.dataset = dataloader.dataset
        self.sampler = dataloader.sampler
        self.collate_fn = dataloader.collate_fn
        self.num_workers = dataloader.num_workers
        self.drop_last = dataloader.drop_last
W
Webbley 已提交
148 149
        self.batch_size = dataloader.batch_size
        self.stream_shuffle_size = dataloader.stream_shuffle_size
W
Webbley 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
        self.fid = fid
        self.count = 0

    def _data_generator(self):
        for indices in self.sampler:

            self.count += 1
            if self.count % self.num_workers != self.fid:
                continue

            batch_data = [self.dataset[i] for i in indices]

            if self.collate_fn is not None:
                yield self.collate_fn(batch_data)
            else:
                yield batch_data

    def _streamdata_generator(self):
W
Webbley 已提交
168 169 170 171
        self._worker_info = WorkerInfo(
            num_workers=self.num_workers, fid=self.fid)
        self.dataset._set_worker_info(self._worker_info)

W
Webbley 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193
        dataset = iter(self.dataset)
        for indices in self.sampler:
            batch_data = []
            for _ in indices:
                try:
                    batch_data.append(next(dataset))
                except StopIteration:
                    break

            if len(batch_data) == 0 or (self.drop_last and
                                        len(batch_data) < len(indices)):
                break
                #  raise StopIteration

            # make sure do not repeat in multiprocessing 
            self.count += 1

            if self.collate_fn is not None:
                yield self.collate_fn(batch_data)
            else:
                yield batch_data

W
Webbley 已提交
194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
    def _stream_shuffle_data_generator(self):
        def _stream_shuffle_index_generator():
            shuffle_size = [i for i in range(self.stream_shuffle_size)]
            while True:
                yield shuffle_size

        def _data_generator():
            dataset = iter(self.dataset)
            for shuffle_size in _stream_shuffle_index_generator():
                shuffle_size_data = []
                for idx in shuffle_size:
                    try:
                        shuffle_size_data.append(next(dataset))
                    except StopIteration:
                        break

                if len(shuffle_size_data) == 0:
                    break

                yield shuffle_size_data

        def _batch_data_generator():
            batch_data = []
            for shuffle_size_data in _data_generator():
                np.random.shuffle(shuffle_size_data)

                for d in shuffle_size_data:
                    batch_data.append(d)
                    if len(batch_data) == self.batch_size:
                        yield batch_data
                        batch_data = []

            if not self.drop_last and len(batch_data) > 0:
                yield batch_data

        self._worker_info = WorkerInfo(
            num_workers=self.num_workers, fid=self.fid)
        self.dataset._set_worker_info(self._worker_info)

        for batch_data in _batch_data_generator():
            if self.collate_fn is not None:
                yield self.collate_fn(batch_data)
            else:
                yield batch_data

W
Webbley 已提交
239 240
    def __iter__(self):
        if isinstance(self.dataset, StreamDataset):
W
Webbley 已提交
241 242 243 244
            if self.stream_shuffle_size > 0:
                data_generator = self._stream_shuffle_data_generator
            else:
                data_generator = self._streamdata_generator
W
Webbley 已提交
245 246 247 248 249 250 251 252
        else:
            data_generator = self._data_generator

        for batch_data in data_generator():
            yield batch_data

    def __call__(self):
        return self.__iter__()