learner.py 8.4 KB
Newer Older
W
weiyue.su 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import os
role = os.getenv("TRAINING_ROLE", "TRAINER")

import numpy as np
from pgl.utils.logger import log
import paddle.fluid as F
import paddle.fluid.layers as L
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import StrategyFactory
from paddle.fluid.incubate.fleet.collective import DistributedStrategy
from paddle.fluid.transpiler.distribute_transpiler import DistributeTranspilerConfig
from paddle.fluid.incubate.fleet.collective import fleet as cfleet
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet as tfleet
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from tensorboardX import SummaryWriter


class Learner(object):
    @classmethod
    def factory(cls, name):
        if name == "cpu":
            return TranspilerLearner()
        elif name == "gpu":
            return CollectiveLearner()
        else:
            raise ValueError

    def build(self, model, data_gen, config):
        raise NotImplementedError

    def warmstart(self, program, path='./checkpoints'):
        def _existed_persitables(var):
            #if not isinstance(var, fluid.framework.Parameter):
            #    return False
            if not F.io.is_persistable(var):
                return False
            param_path = os.path.join(path, var.name)
            log.info("Loading parameter: {} persistable: {} exists: {}".format(
                param_path,
                F.io.is_persistable(var),
                os.path.exists(param_path),
            ))
            return os.path.exists(param_path)
        F.io.load_vars(
            self.exe,
            path,
            main_program=program,
            predicate=_existed_persitables
        )

    def start(self):
        batch = 0
        start = time.time()
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        if trainer_id == 0:
            writer = SummaryWriter(os.path.join(self.config.output_path, "train_history"))

        for epoch_idx in range(self.config.epoch):
            for idx, batch_feed_dict in enumerate(self.model.data_loader()):
                try:
                    cpu_time = time.time()
                    batch += 1
                    batch_loss  = self.exe.run(
                        self.program,
                        feed=batch_feed_dict,
                        fetch_list=[self.model.loss])
                    end = time.time()
                    if trainer_id == 0:
                        writer.add_scalar("loss", np.mean(batch_loss), batch)
                        if batch % self.config.log_per_step == 0:
                            log.info(
                                "Epoch %s Batch %s %s-Loss %s \t Speed(per batch) %.5lf/%.5lf sec"
                                % (epoch_idx, batch, "train", np.mean(batch_loss), (end - start) /batch, (end - cpu_time)))
                            writer.flush()
                        if batch % self.config.save_per_step == 0:
                            self.fleet.save_persistables(self.exe, os.path.join(self.config.output_path, str(batch)))
                except Exception as e:
                    log.info("Pyreader train error")
                    log.exception(e)
            log.info("epcoh %s done." % epoch_idx)

    def stop(self):
        self.fleet.save_persistables(self.exe, os.path.join(self.config.output_path, "last"))


class TranspilerLearner(Learner):
    def __init__(self):
        training_role = os.getenv("TRAINING_ROLE", "TRAINER")
        paddle_role = role_maker.Role.WORKER
        place = F.CPUPlace()
        if training_role == "PSERVER":
            paddle_role = role_maker.Role.SERVER

        # set the fleet runtime environment according to configure
        port = os.getenv("PADDLE_PORT", "6174")
        pserver_ips = os.getenv("PADDLE_PSERVERS")  # ip,ip...
        eplist = []
        for ip in pserver_ips.split(","):
            eplist.append(':'.join([ip, port]))
        pserver_endpoints = eplist  # ip:port,ip:port...
        worker_num = int(os.getenv("PADDLE_TRAINERS_NUM", "0"))
        trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
        role = role_maker.UserDefinedRoleMaker(
            current_id=trainer_id,
            role=paddle_role,
            worker_num=worker_num,
            server_endpoints=pserver_endpoints)
        tfleet.init(role)
        tfleet.save_on_pserver = True

    def build(self, model, data_gen, config):
        self.optimize(model.loss, config.optimizer_type, config.lr)
        self.init_and_run_ps_worker(config.ckpt_path)
        self.program = self.complie_program(model.loss)
        self.fleet = tfleet
        model.data_loader.decorate_batch_generator(
            data_gen, places=F.cpu_places())
        self.config = config
        self.model = model

    def optimize(self, loss, optimizer_type, lr):
        strategy = DistributeTranspilerConfig()
        strategy.sync_mode = False
        log.info('learning rate:%f' % lr)
        if optimizer_type == "sgd":
            optimizer = F.optimizer.SGD(learning_rate=lr)
        elif optimizer_type == "adam":
            # Don't slice tensor ensure convergence 
            optimizer = F.optimizer.Adam(learning_rate=lr, lazy_mode=True)
        else:
            raise ValueError("Unknown Optimizer %s" % optimizer_type)
        #create the DistributeTranspiler configure
        optimizer = tfleet.distributed_optimizer(optimizer, strategy)
        optimizer.minimize(loss)

    def init_and_run_ps_worker(self, ckpt_path):
        # init and run server or worker
        self.exe = F.Executor(F.CPUPlace())
        if tfleet.is_server():
            tfleet.init_server()
            self.warmstart(tfleet.startup_program, path=ckpt_path)
            tfleet.run_server()
            exit()

        if tfleet.is_worker():
            log.info("start init worker done")
            tfleet.init_worker()
            self.exe.run(tfleet.startup_program)

    def complie_program(self, loss):
        num_threads = int(os.getenv("CPU_NUM", 1))
        exec_strategy = F.ExecutionStrategy()
        exec_strategy.num_threads = num_threads
        exec_strategy.use_thread_barrier = False
        build_strategy = F.BuildStrategy()
        build_strategy.enable_inplace = True
        build_strategy.memory_optimize = True
        build_strategy.remove_unnecessary_lock = False
        build_strategy.memory_optimize = False
        build_strategy.async_mode = False

        if num_threads > 1:
            build_strategy.reduce_strategy = F.BuildStrategy.ReduceStrategy.Reduce

        log.info("start build compile program...")
        compiled_prog = F.compiler.CompiledProgram(tfleet.main_program
            ).with_data_parallel(
                loss_name=loss.name,
                build_strategy=build_strategy,
                exec_strategy=exec_strategy)

        return compiled_prog


class CollectiveLearner(Learner):
    def __init__(self):
        role = role_maker.PaddleCloudRoleMaker(is_collective=True)
        cfleet.init(role)

    def optimize(self, loss, optimizer_type, lr):
        optimizer = F.optimizer.Adam(learning_rate=lr)
        dist_strategy = DistributedStrategy()
S
suweiyue 已提交
196
        dist_strategy.enable_sequential_execution = True
W
weiyue.su 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212
        optimizer = cfleet.distributed_optimizer(optimizer, strategy=dist_strategy)
        _, param_grads = optimizer.minimize(loss, F.default_startup_program())
    
    def build(self, model, data_gen, config):
        self.optimize(model.loss, config.optimizer_type, config.lr)
        self.program = cfleet.main_program
        gpu_id = int(os.getenv("FLAGS_selected_gpus", "0"))
        place = F.CUDAPlace(gpu_id)
        self.exe = F.Executor(place)
        self.exe.run(F.default_startup_program())
        self.warmstart(F.default_startup_program(), config.ckpt_path)
        self.fleet = cfleet
        model.data_loader.decorate_batch_generator(
            data_gen, places=place)
        self.config = config
        self.model = model