train_monitor.py 5.3 KB
Newer Older
W
Webbley 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import tqdm
import json
import numpy as np
import os
from datetime import datetime
import logging
from collections import defaultdict
from tensorboardX import SummaryWriter

import paddle.fluid as F
from pgl.utils.logger import log


def multi_device(reader, dev_count):
    if dev_count == 1:
        for batch in reader:
            yield batch
    else:
        batches = []
        for batch in reader:
            batches.append(batch)
            if len(batches) == dev_count:
                yield batches
                batches = []


def evaluate(exe, loader, prog, model, evaluator):
    total_labels = []
    for i in range(len(loader.dataset)):
        g, l = loader.dataset[i]
        total_labels.append(l)
    total_labels = np.vstack(total_labels)

    pred_output = []
    for feed_dict in loader:
        ret = exe.run(prog, feed=feed_dict, fetch_list=model.pred)
        pred_output.append(ret[0])

    pred_output = np.vstack(pred_output)

    result = evaluator.eval({"y_true": total_labels, "y_pred": pred_output})

    return result


def _create_if_not_exist(path):
    basedir = os.path.dirname(path)
    if not os.path.exists(basedir):
        os.makedirs(basedir)


def train_and_evaluate(exe,
                       train_exe,
                       valid_exe,
                       train_ds,
                       valid_ds,
                       test_ds,
                       train_prog,
                       valid_prog,
                       args,
                       model,
                       evaluator,
                       dev_count=1):

    global_step = 0

    timestamp = datetime.now().strftime("%Hh%Mm%Ss")
    log_path = os.path.join(args.log_dir, "tensorboard_log_%s" % timestamp)
    _create_if_not_exist(log_path)

    writer = SummaryWriter(log_path)

    best_valid_score = 0.0
    for e in range(args.epoch):
        for feed_dict in multi_device(train_ds, dev_count):
            if dev_count > 1:
                ret = train_exe.run(feed=feed_dict,
                                    fetch_list=model.metrics.vars)
                ret = [[np.mean(v)] for v in ret]
            else:
                ret = train_exe.run(train_prog,
                                    feed=feed_dict,
                                    fetch_list=model.metrics.vars)

            ret = model.metrics.parse(ret)
            if global_step % args.train_log_step == 0:
                writer.add_scalar(
                    "batch_loss", ret['loss'], global_step=global_step)
                log.info("epoch: %d | step: %d | loss: %.4f " %
                         (e, global_step, ret['loss']))

            global_step += 1
            if global_step % args.eval_step == 0:
                valid_ret = evaluate(exe, valid_ds, valid_prog, model,
                                     evaluator)
                message = "valid: "
                for key, value in valid_ret.items():
                    message += "%s %.4f | " % (key, value)
                    writer.add_scalar(
                        "eval_%s" % key, value, global_step=global_step)
                log.info(message)

                # testing
                test_ret = evaluate(exe, test_ds, valid_prog, model, evaluator)
                message = "test: "
                for key, value in test_ret.items():
                    message += "%s %.4f | " % (key, value)
                    writer.add_scalar(
                        "test_%s" % key, value, global_step=global_step)
                log.info(message)

        # evaluate after one epoch
        valid_ret = evaluate(exe, valid_ds, valid_prog, model, evaluator)
        message = "epoch %s valid: " % e
        for key, value in valid_ret.items():
            message += "%s %.4f | " % (key, value)
            writer.add_scalar("eval_%s" % key, value, global_step=global_step)
        log.info(message)

        # testing
        test_ret = evaluate(exe, test_ds, valid_prog, model, evaluator)
        message = "epoch %s test: " % e
        for key, value in test_ret.items():
            message += "%s %.4f | " % (key, value)
            writer.add_scalar("test_%s" % key, value, global_step=global_step)
        log.info(message)

        message = "epoch %s best %s result | " % (e, args.eval_metrics)
        if valid_ret[args.eval_metrics] > best_valid_score:
            best_valid_score = valid_ret[args.eval_metrics]
            best_test_score = test_ret[args.eval_metrics]

        message += "valid %.4f | test %.4f" % (best_valid_score,
                                               best_test_score)
        log.info(message)

        #  if global_step % args.save_step == 0:
        #      F.io.save_persistables(exe, os.path.join(args.save_dir, "%s" % global_step), train_prog)

    writer.close()