train_scale.py 10.4 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Multi-GPU settings
"""
import argparse
import time

import numpy as np
import scipy.sparse as sp
from sklearn.preprocessing import StandardScaler

import pgl
from pgl.utils.logger import log
from pgl.utils import paddle_helper
import paddle
import paddle.fluid as fluid
import reader
from model import graphsage_mean, graphsage_meanpool,\
        graphsage_maxpool, graphsage_lstm


def fixed_offset(data, num_nodes, scale):
    """Test
    """
    len_data = len(data)
    len_per_part = int(len_data / scale)
    offset = np.arange(0, scale, dtype="int64")
    offset = offset * num_nodes
    offset = np.repeat(offset, len_per_part)
    if len(data.shape) > 1:
        data += offset.reshape([-1, 1])
    else:
        data += offset


def load_data(normalize=True, symmetry=True, scale=1):
    """
        data from https://github.com/matenure/FastGCN/issues/8
        reddit_adj.npz: https://drive.google.com/open?id=174vb0Ws7Vxk_QTUtxqTgDHSQ4El4qDHt
        reddit.npz: https://drive.google.com/open?id=19SphVl_Oe8SJ1r87Hr5a6znx3nJu1F2J
    """
    data = np.load("data/reddit.npz")
    adj = sp.load_npz("data/reddit_adj.npz")
    if symmetry:
        adj = adj + adj.T
    adj = adj.tocoo()
    src = adj.row.reshape([-1, 1])
    dst = adj.col.reshape([-1, 1])
    edges = np.hstack([src, dst])

    num_class = 41

    train_label = data['y_train']
    val_label = data['y_val']
    test_label = data['y_test']

    train_index = data['train_index']
    val_index = data['val_index']
    test_index = data['test_index']

    feature = data["feats"].astype("float32")

    if normalize:
        scaler = StandardScaler()
        scaler.fit(feature[train_index])
        feature = scaler.transform(feature)

    if scale > 1:
        num_nodes = feature.shape[0]
        feature = np.tile(feature, [scale, 1])
        train_label = np.tile(train_label, [scale])
        val_label = np.tile(val_label, [scale])
        test_label = np.tile(test_label, [scale])
        edges = np.tile(edges, [scale, 1])
        fixed_offset(edges, num_nodes, scale)
        train_index = np.tile(train_index, [scale])
        fixed_offset(train_index, num_nodes, scale)
        val_index = np.tile(val_index, [scale])
        fixed_offset(val_index, num_nodes, scale)
        test_index = np.tile(test_index, [scale])
        fixed_offset(test_index, num_nodes, scale)

    log.info("Feature shape %s" % (repr(feature.shape)))

    graph = pgl.graph.Graph(
        num_nodes=feature.shape[0],
        edges=edges,
L
liweibin 已提交
100
        node_feat={"feature": feature})
Y
Yelrose 已提交
101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241

    return {
        "graph": graph,
        "train_index": train_index,
        "train_label": train_label,
        "val_label": val_label,
        "val_index": val_index,
        "test_index": test_index,
        "test_label": test_label,
        "feature": feature,
        "num_class": 41
    }


def build_graph_model(graph_wrapper, num_class, k_hop, graphsage_type,
                      hidden_size, feature):
    """Test"""
    node_index = fluid.layers.data(
        "node_index", shape=[None], dtype="int64", append_batch_size=False)

    node_label = fluid.layers.data(
        "node_label", shape=[None, 1], dtype="int64", append_batch_size=False)

    for i in range(k_hop):
        if graphsage_type == 'graphsage_mean':
            feature = graphsage_mean(
                graph_wrapper,
                feature,
                hidden_size,
                act="relu",
                name="graphsage_mean_%s % i")
        elif graphsage_type == 'graphsage_meanpool':
            feature = graphsage_meanpool(
                graph_wrapper,
                feature,
                hidden_size,
                act="relu",
                name="graphsage_meanpool_%s % i")
        elif graphsage_type == 'graphsage_maxpool':
            feature = graphsage_maxpool(
                graph_wrapper,
                feature,
                hidden_size,
                act="relu",
                name="graphsage_maxpool_%s % i")
        elif graphsage_type == 'graphsage_lstm':
            feature = graphsage_lstm(
                graph_wrapper,
                feature,
                hidden_size,
                act="relu",
                name="graphsage_maxpool_%s % i")
        else:
            raise ValueError("graphsage type %s is not"
                             " implemented" % graphsage_type)

    feature = fluid.layers.gather(feature, node_index)
    logits = fluid.layers.fc(feature,
                             num_class,
                             act=None,
                             name='classification_layer')
    proba = fluid.layers.softmax(logits)

    loss = fluid.layers.softmax_with_cross_entropy(
        logits=logits, label=node_label)
    loss = fluid.layers.mean(loss)
    acc = fluid.layers.accuracy(input=proba, label=node_label, k=1)
    return loss, acc


def run_epoch(batch_iter,
              exe,
              program,
              prefix,
              model_loss,
              model_acc,
              epoch,
              log_per_step=100):
    """Test"""
    batch = 0
    total_loss = 0.
    total_acc = 0.
    total_sample = 0
    start = time.time()
    for batch_feed_dict in batch_iter():
        batch += 1
        batch_loss, batch_acc = exe.run(program,
                                        fetch_list=[model_loss, model_acc],
                                        feed=batch_feed_dict)

        if batch % log_per_step == 0:
            log.info("Batch %s %s-Loss %s %s-Acc %s" %
                     (batch, prefix, batch_loss, prefix, batch_acc))

        num_samples = len(batch_feed_dict["node_index"])
        total_loss += batch_loss * num_samples
        total_acc += batch_acc * num_samples
        total_sample += num_samples
    end = time.time()

    log.info("%s Epoch %s Loss %.5lf Acc %.5lf Speed(per batch) %.5lf sec" %
             (prefix, epoch, total_loss / total_sample,
              total_acc / total_sample, (end - start) / batch))


def main(args):
    """Test """
    data = load_data(args.normalize, args.symmetry, args.scale)
    log.info("preprocess finish")
    log.info("Train Examples: %s" % len(data["train_index"]))
    log.info("Val Examples: %s" % len(data["val_index"]))
    log.info("Test Examples: %s" % len(data["test_index"]))
    log.info("Num nodes %s" % data["graph"].num_nodes)
    log.info("Num edges %s" % data["graph"].num_edges)
    log.info("Average Degree %s" % np.mean(data["graph"].indegree()))

    place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
    train_program = fluid.Program()
    startup_program = fluid.Program()

    samples = []
    if args.samples_1 > 0:
        samples.append(args.samples_1)
    if args.samples_2 > 0:
        samples.append(args.samples_2)

    with fluid.program_guard(train_program, startup_program):
        graph_wrapper = pgl.graph_wrapper.GraphWrapper(
            "sub_graph",
            node_feat=data['graph'].node_feat_info())

        model_loss, model_acc = build_graph_model(
            graph_wrapper,
            num_class=data["num_class"],
            feature=graph_wrapper.node_feat["feature"],
            hidden_size=args.hidden_size,
            graphsage_type=args.graphsage_type,
            k_hop=len(samples))

    test_program = train_program.clone(for_test=True)

L
liweibin 已提交
242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
    train_iter = reader.multiprocess_graph_reader(
        data['graph'],
        graph_wrapper,
        samples=samples,
        num_workers=args.sample_workers,
        batch_size=args.batch_size,
        node_index=data['train_index'],
        node_label=data["train_label"])

    val_iter = reader.multiprocess_graph_reader(
        data['graph'],
        graph_wrapper,
        samples=samples,
        num_workers=args.sample_workers,
        batch_size=args.batch_size,
        node_index=data['val_index'],
        node_label=data["val_label"])

    test_iter = reader.multiprocess_graph_reader(
        data['graph'],
        graph_wrapper,
        samples=samples,
        num_workers=args.sample_workers,
        batch_size=args.batch_size,
        node_index=data['test_index'],
        node_label=data["test_label"])
Y
Yelrose 已提交
268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325

    with fluid.program_guard(train_program, startup_program):
        adam = fluid.optimizer.Adam(learning_rate=args.lr)
        adam.minimize(model_loss)

    exe = fluid.Executor(place)
    exe.run(startup_program)

    for epoch in range(args.epoch):
        run_epoch(
            train_iter,
            program=train_program,
            exe=exe,
            prefix="train",
            model_loss=model_loss,
            model_acc=model_acc,
            epoch=epoch)

        run_epoch(
            val_iter,
            program=test_program,
            exe=exe,
            prefix="val",
            model_loss=model_loss,
            model_acc=model_acc,
            log_per_step=10000,
            epoch=epoch)

    run_epoch(
        test_iter,
        program=test_program,
        prefix="test",
        exe=exe,
        model_loss=model_loss,
        model_acc=model_acc,
        log_per_step=10000,
        epoch=epoch)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='graphsage')
    parser.add_argument("--use_cuda", action='store_true', help="use_cuda")
    parser.add_argument(
        "--normalize", action='store_true', help="normalize features")
    parser.add_argument(
        "--symmetry", action='store_true', help="undirect graph")
    parser.add_argument("--graphsage_type", type=str, default="graphsage_mean")
    parser.add_argument("--sample_workers", type=int, default=5)
    parser.add_argument("--epoch", type=int, default=10)
    parser.add_argument("--hidden_size", type=int, default=128)
    parser.add_argument("--batch_size", type=int, default=128)
    parser.add_argument("--lr", type=float, default=0.01)
    parser.add_argument("--samples_1", type=int, default=25)
    parser.add_argument("--samples_2", type=int, default=10)
    parser.add_argument("--scale", type=int, default=1)
    args = parser.parse_args()
    log.info(args)
    main(args)