heter_graph_wrapper.py 5.1 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This package provides interface to help building static computational graph
for PaddlePaddle.
"""

import warnings
import numpy as np
import paddle.fluid as fluid

from pgl.utils import op
from pgl.utils import paddle_helper
from pgl.utils.logger import log
from pgl.graph_wrapper import GraphWrapper

ALL = "__ALL__"
L
liweibin 已提交
29
__all__ = ["HeterGraphWrapper"]
Y
Yelrose 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61


def is_all(arg):
    """is_all
    """
    return isinstance(arg, str) and arg == ALL


class HeterGraphWrapper(object):
    """Implement a heterogeneous graph wrapper that creates a graph data holders
    that attributes and features in the heterogeneous graph.
    And we provide interface :code:`to_feed` to help converting :code:`Graph`
    data into :code:`feed_dict`.

    Args:
        name: The heterogeneous graph data prefix

        place: fluid.CPUPlace or fluid.GPUPlace(n) indicating the
               device to hold the graph data.

        node_feat: A dict of list of tuples that decribe the details of node
                   feature tenosr. Each tuple mush be (name, shape, dtype)
                   and the first dimension of the shape must be set unknown
                   (-1 or None) or we can easily use :code:`HeterGraph.node_feat_info()`
                   to get the node_feat settings.

        edge_feat: A dict of list of tuples that decribe the details of edge
                   feature tenosr. Each tuple mush be (name, shape, dtype)
                   and the first dimension of the shape must be set unknown
                   (-1 or None) or we can easily use :code:`HeterGraph.edge_feat_info()`
                   to get the edge_feat settings.
                   
L
liweibin 已提交
62 63 64 65 66
    Examples:
        .. code-block:: python

            import paddle.fluid as fluid
            import numpy as np
L
liweibin 已提交
67 68
            from pgl import heter_graph
            from pgl import heter_graph_wrapper
L
liweibin 已提交
69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95
            num_nodes = 4
            node_types = [(0, 'user'), (1, 'item'), (2, 'item'), (3, 'user')]
            edges = {
                'edges_type1': [(0,1), (3,2)],
                'edges_type2': [(1,2), (3,1)],
            }
            node_feat = {'feature': np.random.randn(4, 16)}
            edges_feat = {
                'edges_type1': {'h': np.random.randn(2, 16)},
                'edges_type2': {'h': np.random.randn(2, 16)},
            }

            g = heter_graph.HeterGraph(
                            num_nodes=num_nodes,
                            edges=edges,
                            node_types=node_types,
                            node_feat=node_feat,
                            edge_feat=edges_feat)
           
            place = fluid.CPUPlace()

            gw = heter_graph_wrapper.HeterGraphWrapper(
                                name='heter_graph', 
                                place = place, 
                                edge_types = g.edge_types_info(),
                                node_feat=g.node_feat_info(),
                                edge_feat=g.edge_feat_info())
Y
Yelrose 已提交
96 97 98 99 100 101 102 103
    """

    def __init__(self, name, place, edge_types, node_feat={}, edge_feat={}):
        self.__data_name_prefix = name
        self._place = place
        self._edge_types = edge_types
        self._multi_gw = {}
        for edge_type in self._edge_types:
L
liweibin 已提交
104
            type_name = self.__data_name_prefix + '/' + edge_type
Y
Yelrose 已提交
105
            if node_feat:
L
liweibin 已提交
106
                n_feat = node_feat
Y
Yelrose 已提交
107 108 109 110 111 112 113 114
            else:
                n_feat = {}

            if edge_feat:
                e_feat = edge_feat[edge_type]
            else:
                e_feat = {}

L
liweibin 已提交
115
            self._multi_gw[edge_type] = GraphWrapper(
Y
Yelrose 已提交
116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148
                name=type_name,
                place=self._place,
                node_feat=n_feat,
                edge_feat=e_feat)

    def to_feed(self, heterGraph, edge_types_list=ALL):
        """Convert the graph into feed_dict.

        This function helps to convert graph data into feed dict
        for :code:`fluid.Excecutor` to run the model.

        Args:
            heterGraph: the :code:`HeterGraph` data object
            edge_types_list: the edge types list to be fed

        Return:
            A dictinary contains data holder names and its coresponding data.
        """
        multi_graphs = heterGraph._multi_graph
        if is_all(edge_types_list):
            edge_types_list = self._edge_types

        feed_dict = {}
        for edge_type in edge_types_list:
            feed_d = self._multi_gw[edge_type].to_feed(multi_graphs[edge_type])
            feed_dict.update(feed_d)

        return feed_dict

    def __getitem__(self, edge_type):
        """__getitem__
        """
        return self._multi_gw[edge_type]