# STGCN: Spatio-Temporal Graph Convolutional Network[Spatio-Temporal Graph Convolutional Network \(STGCN\)](https://arxiv.org/pdf/1709.04875.pdf) is a novel deep learning framework to tackle time series prediction problem. Based on PGL, we reproduce STGCN algorithms to predict new confirmed patients in some cities with the historical immigration records.### DatasetsYou can make your customized dataset by the following format:* input.csv: Historical immigration records with shape of [num\_time\_steps * num\_cities].* output.csv: New confirmed patients records with shape of [num\_time\_steps * num\_cities].* W.csv: Weighted Adjacency Matrix with shape of [num\_cities * num\_cities].* city.csv: Each line is a number and the corresponding city name.### Dependencies- paddlepaddle 1.6- pgl 1.0.0### How to runFor examples, use gpu to train STGCN on your dataset.```python main.py --use_cuda --input_file dataset/input_csv --label_file dataset/output.csv --adj_mat_file dataset/W.csv --city_file dataset/city.csv ```#### Hyperparameters- n\_route: Number of city.- n\_his: "n\_his" time steps of previous observations of historical immigration records.- n\_pred: Next "n\_pred" time steps of New confirmed patients records.- Ks: Number of GCN layers.- Kt: Kernel size of temporal convolution.- use\_cuda: Use gpu if assign use\_cuda.