graph_wrapper.py 21.8 KB
Newer Older
Y
yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This package provides interface to help building static computational graph
for PaddlePaddle.
"""

import warnings
import numpy as np
import paddle.fluid as fluid

from pgl.utils import op
from pgl.utils import paddle_helper
from pgl.utils.logger import log

__all__ = ["BaseGraphWrapper", "GraphWrapper", "StaticGraphWrapper"]


def send(src, dst, nfeat, efeat, message_func):
    """Send message from src to dst.
    """
    src_feat = op.read_rows(nfeat, src)
    dst_feat = op.read_rows(nfeat, dst)
    msg = message_func(src_feat, dst_feat, efeat)
    return msg


def recv(dst, uniq_dst, bucketing_index, msg, reduce_function, node_ids):
    """Recv message from given msg to dst nodes.
    """
    if reduce_function == "sum":
        if isinstance(msg, dict):
            raise TypeError("The message for build-in function"
                            " should be Tensor not dict.")

        try:
            out_dims = msg.shape[-1]
            init_output = fluid.layers.fill_constant_batch_size_like(
                node_ids, shape=[1, out_dims], value=0, dtype="float32")
            init_output.stop_gradient = False
            output = paddle_helper.scatter_add(init_output, dst, msg)
            return output
        except TypeError as e:
            warnings.warn(
                "scatter_add is not supported with paddle version <= 1.5")

            def sum_func(message):
                return fluid.layers.sequence_pool(message, "sum")

            reduce_function = sum_func

    # convert msg into lodtensor
    bucketed_msg = op.nested_lod_reset(msg, bucketing_index)
    # Check dim for bucketed_msg equal to out_dims
    output = reduce_function(bucketed_msg)
    out_dims = output.shape[-1]

    init_output = fluid.layers.fill_constant_batch_size_like(
        node_ids, shape=[1, out_dims], value=0, dtype="float32")
    init_output.stop_gradient = False
    output = fluid.layers.scatter(init_output, uniq_dst, output)
    return output


class BaseGraphWrapper(object):
    """This module implement base class for graph wrapper.

    Currently our PGL is developed based on static computational mode of
    paddle (we'll support dynamic computational model later). We need to build
    model upon a virtual data holder. BaseGraphWrapper provide a virtual
    graph structure that users can build deep learning models
    based on this virtual graph. And then feed real graph data to run
    the models. Moreover, we provide convenient message-passing interface
    (send & recv) for building graph neural networks.

    NOTICE: Don't use this BaseGraphWrapper directly. Use :code:`GraphWrapper`
    and :code:`StaticGraphWrapper` to create graph wrapper instead.
    """

    def __init__(self):
        self._node_feat_tensor_dict = {}
        self._edge_feat_tensor_dict = {}
        self._edges_src = None
        self._edges_dst = None
        self._num_nodes = None
        self._indegree = None
        self._edge_uniq_dst = None
        self._edge_uniq_dst_count = None
        self._node_ids = None

    def send(self, message_func, nfeat_list=None, efeat_list=None):
        """Send message from all src nodes to dst nodes.

        The UDF message function should has the following format.

        .. code-block:: python

            def message_func(src_feat, dst_feat, edge_feat):
                '''
                    Args:
                        src_feat: the node feat dict attached to the src nodes.
                        dst_feat: the node feat dict attached to the dst nodes.
                        edge_feat: the edge feat dict attached to the
                                   corresponding (src, dst) edges.

                    Return:
                        It should return a tensor or a dictionary of tensor. And each tensor
                        should have a shape of (num_edges, dims).
                '''
                pass

        Args:
            message_func: UDF function.
            nfeat_list: a list of names or tuple (name, tensor)
            efeat_list: a list of names or tuple (name, tensor)

        Return:
            A dictionary of tensor representing the message. Each of the values
            in the dictionary has a shape (num_edges, dim) which should be collected
            by :code:`recv` function.
        """
        if efeat_list is None:
            efeat_list = {}
        if nfeat_list is None:
            nfeat_list = {}

        src, dst = self.edges
        nfeat = {}
        for feat in nfeat_list:
            if isinstance(feat, str):
                nfeat[feat] = self.node_feat[feat]
            else:
                name, tensor = feat
                nfeat[name] = tensor

        efeat = {}
        for feat in efeat_list:
            if isinstance(feat, str):
                efeat[feat] = self.edge_feat[feat]
            else:
                name, tensor = feat
                efeat[name] = tensor

        msg = send(src, dst, nfeat, efeat, message_func)
        return msg

    def recv(self, msg, reduce_function):
        """Recv message and aggregate the message by reduce_fucntion

        The UDF reduce_function function should has the following format.

        .. code-block:: python

            def reduce_func(msg):
                '''
                    Args:
                        msg: A LodTensor or a dictionary of LodTensor whose batch_size
                             is equals to the number of unique dst nodes.

                    Return:
                        It should return a tensor with shape (batch_size, out_dims). The
                        batch size should be the same as msg.
                '''
                pass

        Args:
            msg: A tensor or a dictionary of tensor created by send function..

            reduce_function: UDF reduce function or strings "sum" as built-in function.
                             The built-in "sum" will use scatter_add to optimized the speed.

        Return:
            A tensor with shape (num_nodes, out_dims). The output for nodes with no message
            will be zeros.
        """
        output = recv(
            dst=self._edges_dst,
            uniq_dst=self._edge_uniq_dst,
Y
Yelrose 已提交
190
            bucketing_index=self._edge_uniq_dst_count,
Y
yelrose 已提交
191 192 193 194 195 196 197 198 199 200 201
            msg=msg,
            reduce_function=reduce_function,
            node_ids=self._node_ids)
        return output

    @property
    def edges(self):
        """Return a tuple of edge Tensor (src, dst).

        Return:
            A tuple of Tensor (src, dst). Src and dst are both
Y
Yelrose 已提交
202
            tensor with shape (num_edges, ) and dtype int64.
Y
yelrose 已提交
203 204 205 206 207 208 209 210
        """
        return self._edges_src, self._edges_dst

    @property
    def num_nodes(self):
        """Return a variable of number of nodes

        Return:
Y
Yelrose 已提交
211
            A variable with shape (1,) as the number of nodes in int64.
Y
yelrose 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
        """
        return self._num_nodes

    @property
    def edge_feat(self):
        """Return a dictionary of tensor representing edge features.

        Return:
            A dictionary whose keys are the feature names and the values
            are feature tensor.
        """
        return self._edge_feat_tensor_dict

    @property
    def node_feat(self):
        """Return a dictionary of tensor representing node features.

        Return:
            A dictionary whose keys are the feature names and the values
            are feature tensor.
        """
        return self._node_feat_tensor_dict

    def indegree(self):
        """Return the indegree tensor for all nodes.

        Return:
Y
Yelrose 已提交
239
            A tensor of shape (num_nodes, ) in int64.
Y
yelrose 已提交
240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
        """
        return self._indegree


class StaticGraphWrapper(BaseGraphWrapper):
    """Implement a graph wrapper that the data of the graph won't
    be changed and it can be fit into the GPU or CPU memory. This
    can reduce the time of swapping large data from GPU and CPU.

    Args:
        name: The graph data prefix

        graph: The static graph that should be put into memory

        place: fluid.CPUPlace or fluid.GPUPlace(n) indicating the
               device to hold the graph data.

    Examples:

        If we have a immutable graph and it can be fit into the GPU or CPU.
        we can just use a :code:`StaticGraphWrapper` to pre-place the graph
        data into devices.

        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            from pgl.graph import Graph
            from pgl.graph_wrapper import StaticGraphWrapper

            place = fluid.CPUPlace()
            exe = fluid.Excecutor(place)

            num_nodes = 5
            edges = [ (0, 1), (1, 2), (3, 4)]
            feature = np.random.randn(5, 100)
            edge_feature = np.random.randn(3, 100)
            graph = Graph(num_nodes=num_nodes,
                        edges=edges,
                        node_feat={
                            "feature": feature
                        },
                        edge_feat={
                            "edge_feature": edge_feature
                        })

            graph_wrapper = StaticGraphWrapper(name="graph",
                        graph=graph,
                        place=place)

            # build your deep graph model

            # Initialize parameters for deep graph model
            exe.run(fluid.default_startup_program())

            # Initialize graph data
            graph_wrapper.initialize(place)
    """

    def __init__(self, name, graph, place):
        super(StaticGraphWrapper, self).__init__()
        self._initializers = []
        self.__data_name_prefix = name
        self.__create_graph_attr(graph)

    def __create_graph_attr(self, graph):
        """Create graph attributes for paddlepaddle.
        """
        src, dst = list(zip(*graph.edges))
        src, dst, eid = graph.sorted_edges(sort_by="dst")
        indegree = graph.indegree()
        nodes = graph.nodes
        uniq_dst = nodes[indegree > 0]
        uniq_dst_count = indegree[indegree > 0]
Y
Yelrose 已提交
314 315
        uniq_dst_count = np.cumsum(uniq_dst_count, dtype='int32')
        uniq_dst_count = np.insert(uniq_dst_count, 0, 0)
Y
yelrose 已提交
316 317 318 319 320 321 322 323 324 325 326

        edge_feat = {}

        for key, value in graph.edge_feat.items():
            edge_feat[key] = value[eid]
        node_feat = graph.node_feat

        self.__create_graph_node_feat(node_feat, self._initializers)
        self.__create_graph_edge_feat(edge_feat, self._initializers)

        self._edges_src, init = paddle_helper.constant(
Y
Yelrose 已提交
327
            dtype="int64",
Y
yelrose 已提交
328
            value=src,
Y
Yelrose 已提交
329
            name=self.__data_name_prefix + '/edges_src')
Y
yelrose 已提交
330 331 332
        self._initializers.append(init)

        self._edges_dst, init = paddle_helper.constant(
Y
Yelrose 已提交
333
            dtype="int64",
Y
yelrose 已提交
334
            value=dst,
Y
Yelrose 已提交
335
            name=self.__data_name_prefix + '/edges_dst')
Y
yelrose 已提交
336 337 338
        self._initializers.append(init)

        self._num_nodes, init = paddle_helper.constant(
Y
Yelrose 已提交
339
            dtype="int64",
Y
yelrose 已提交
340 341
            hide_batch_size=False,
            value=np.array([graph.num_nodes]),
Y
Yelrose 已提交
342
            name=self.__data_name_prefix + '/num_nodes')
Y
yelrose 已提交
343 344 345
        self._initializers.append(init)

        self._edge_uniq_dst, init = paddle_helper.constant(
Y
Yelrose 已提交
346 347
            name=self.__data_name_prefix + "/uniq_dst",
            dtype="int64",
Y
yelrose 已提交
348 349 350 351
            value=uniq_dst)
        self._initializers.append(init)

        self._edge_uniq_dst_count, init = paddle_helper.constant(
Y
Yelrose 已提交
352
            name=self.__data_name_prefix + "/uniq_dst_count",
Y
yelrose 已提交
353 354 355 356
            dtype="int32",
            value=uniq_dst_count)
        self._initializers.append(init)

Y
Yelrose 已提交
357
        node_ids_value = np.arange(0, graph.num_nodes, dtype="int64")
Y
yelrose 已提交
358
        self._node_ids, init = paddle_helper.constant(
Y
Yelrose 已提交
359 360
            name=self.__data_name_prefix + "/node_ids",
            dtype="int64",
Y
yelrose 已提交
361 362 363 364
            value=node_ids_value)
        self._initializers.append(init)

        self._indegree, init = paddle_helper.constant(
Y
Yelrose 已提交
365 366
            name=self.__data_name_prefix + "/indegree",
            dtype="int64",
Y
yelrose 已提交
367 368 369 370 371 372 373 374 375 376 377
            value=indegree)
        self._initializers.append(init)

    def __create_graph_node_feat(self, node_feat, collector):
        """Convert node features into paddlepaddle tensor.
        """
        for node_feat_name, node_feat_value in node_feat.items():
            node_feat_shape = node_feat_value.shape
            node_feat_dtype = node_feat_value.dtype
            self._node_feat_tensor_dict[
                node_feat_name], init = paddle_helper.constant(
Y
Yelrose 已提交
378 379
                    name=self.__data_name_prefix + '/node_feat/' +
                    node_feat_name,
Y
yelrose 已提交
380 381 382 383 384 385 386 387 388 389 390 391
                    dtype=node_feat_dtype,
                    value=node_feat_value)
            collector.append(init)

    def __create_graph_edge_feat(self, edge_feat, collector):
        """Convert edge features into paddlepaddle tensor.
        """
        for edge_feat_name, edge_feat_value in edge_feat.items():
            edge_feat_shape = edge_feat_value.shape
            edge_feat_dtype = edge_feat_value.dtype
            self._edge_feat_tensor_dict[
                edge_feat_name], init = paddle_helper.constant(
Y
Yelrose 已提交
392 393
                    name=self.__data_name_prefix + '/edge_feat/' +
                    edge_feat_name,
Y
yelrose 已提交
394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478
                    dtype=edge_feat_dtype,
                    value=edge_feat_value)
            collector.append(init)

    def initialize(self, place):
        """Placing the graph data into the devices.

        Args:
            place: fluid.CPUPlace or fluid.GPUPlace(n) indicating the
                   device to hold the graph data.
        """
        log.info(
            "StaticGraphWrapper.initialize must be called after startup program"
        )
        for init_func in self._initializers:
            init_func(place)


class GraphWrapper(BaseGraphWrapper):
    """Implement a graph wrapper that creates a graph data holders
    that attributes and features in the graph are :code:`fluid.layers.data`.
    And we provide interface :code:`to_feed` to help converting :code:`Graph`
    data into :code:`feed_dict`.

    Args:
        name: The graph data prefix

        place: fluid.CPUPlace or fluid.GPUPlace(n) indicating the
               device to hold the graph data.

        node_feat: A list of tuples that decribe the details of node
                   feature tenosr. Each tuple mush be (name, shape, dtype)
                   and the first dimension of the shape must be set unknown
                   (-1 or None) or we can easily use :code:`Graph.node_feat_info()`
                   to get the node_feat settings.

        edge_feat: A list of tuples that decribe the details of edge
                   feature tenosr. Each tuple mush be (name, shape, dtype)
                   and the first dimension of the shape must be set unknown
                   (-1 or None) or we can easily use :code:`Graph.edge_feat_info()`
                   to get the edge_feat settings.

    Examples:

        .. code-block:: python

            import numpy as np
            import paddle.fluid as fluid
            from pgl.graph import Graph
            from pgl.graph_wrapper import GraphWrapper

            place = fluid.CPUPlace()
            exe = fluid.Excecutor(place)

            num_nodes = 5
            edges = [ (0, 1), (1, 2), (3, 4)]
            feature = np.random.randn(5, 100)
            edge_feature = np.random.randn(3, 100)
            graph = Graph(num_nodes=num_nodes,
                        edges=edges,
                        node_feat={
                            "feature": feature
                        },
                        edge_feat={
                            "edge_feature": edge_feature
                        })

            graph_wrapper = GraphWrapper(name="graph",
                        place=place,
                        node_feat=graph.node_feat_info(),
                        edge_feat=graph.edge_feat_info())

            # build your deep graph model
            ...

            # Initialize parameters for deep graph model
            exe.run(fluid.default_startup_program())

            for i in range(10):
                feed_dict = graph_wrapper.to_feed(graph)
                ret = exe.run(fetch_list=[...], feed=feed_dict )
    """

    def __init__(self, name, place, node_feat=[], edge_feat=[]):
        super(GraphWrapper, self).__init__()
Y
Yelrose 已提交
479 480
        # collect holders for PyReader
        self._holder_list = []
Y
yelrose 已提交
481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
        self.__data_name_prefix = name
        self._place = place
        self.__create_graph_attr_holders()
        for node_feat_name, node_feat_shape, node_feat_dtype in node_feat:
            self.__create_graph_node_feat_holders(
                node_feat_name, node_feat_shape, node_feat_dtype)

        for edge_feat_name, edge_feat_shape, edge_feat_dtype in edge_feat:
            self.__create_graph_edge_feat_holders(
                edge_feat_name, edge_feat_shape, edge_feat_dtype)

    def __create_graph_attr_holders(self):
        """Create data holders for graph attributes.
        """
        self._edges_src = fluid.layers.data(
Y
Yelrose 已提交
496
            self.__data_name_prefix + '/edges_src',
Y
yelrose 已提交
497 498
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
499
            dtype="int64",
Y
yelrose 已提交
500 501
            stop_gradient=True)
        self._edges_dst = fluid.layers.data(
Y
Yelrose 已提交
502
            self.__data_name_prefix + '/edges_dst',
Y
yelrose 已提交
503 504
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
505
            dtype="int64",
Y
yelrose 已提交
506 507
            stop_gradient=True)
        self._num_nodes = fluid.layers.data(
Y
Yelrose 已提交
508
            self.__data_name_prefix + '/num_nodes',
Y
yelrose 已提交
509 510
            shape=[1],
            append_batch_size=False,
Y
Yelrose 已提交
511
            dtype='int64',
Y
yelrose 已提交
512 513
            stop_gradient=True)
        self._edge_uniq_dst = fluid.layers.data(
Y
Yelrose 已提交
514
            self.__data_name_prefix + "/uniq_dst",
Y
yelrose 已提交
515 516
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
517
            dtype="int64",
Y
yelrose 已提交
518 519
            stop_gradient=True)
        self._edge_uniq_dst_count = fluid.layers.data(
Y
Yelrose 已提交
520
            self.__data_name_prefix + "/uniq_dst_count",
Y
yelrose 已提交
521 522 523 524 525
            shape=[None],
            append_batch_size=False,
            dtype="int32",
            stop_gradient=True)
        self._node_ids = fluid.layers.data(
Y
Yelrose 已提交
526
            self.__data_name_prefix + "/node_ids",
Y
yelrose 已提交
527 528
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
529
            dtype="int64",
Y
yelrose 已提交
530 531
            stop_gradient=True)
        self._indegree = fluid.layers.data(
Y
Yelrose 已提交
532
            self.__data_name_prefix + "/indegree",
Y
yelrose 已提交
533 534
            shape=[None],
            append_batch_size=False,
Y
Yelrose 已提交
535
            dtype="int64",
Y
yelrose 已提交
536
            stop_gradient=True)
Y
Yelrose 已提交
537 538 539 540 541
        self._holder_list.extend([
            self._edges_src, self._edges_dst, self._num_nodes,
            self._edge_uniq_dst, self._edge_uniq_dst_count, self._node_ids,
            self._indegree
        ])
Y
yelrose 已提交
542 543 544 545 546 547

    def __create_graph_node_feat_holders(self, node_feat_name, node_feat_shape,
                                         node_feat_dtype):
        """Create data holders for node features.
        """
        feat_holder = fluid.layers.data(
Y
Yelrose 已提交
548
            self.__data_name_prefix + '/node_feat/' + node_feat_name,
Y
yelrose 已提交
549 550 551 552 553
            shape=node_feat_shape,
            append_batch_size=False,
            dtype=node_feat_dtype,
            stop_gradient=True)
        self._node_feat_tensor_dict[node_feat_name] = feat_holder
Y
Yelrose 已提交
554
        self._holder_list.append(feat_holder)
Y
yelrose 已提交
555 556 557 558 559 560

    def __create_graph_edge_feat_holders(self, edge_feat_name, edge_feat_shape,
                                         edge_feat_dtype):
        """Create edge holders for edge features.
        """
        feat_holder = fluid.layers.data(
Y
Yelrose 已提交
561
            self.__data_name_prefix + '/edge_feat/' + edge_feat_name,
Y
yelrose 已提交
562 563 564 565 566
            shape=edge_feat_shape,
            append_batch_size=False,
            dtype=edge_feat_dtype,
            stop_gradient=True)
        self._edge_feat_tensor_dict[edge_feat_name] = feat_holder
Y
Yelrose 已提交
567
        self._holder_list.append(feat_holder)
Y
yelrose 已提交
568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587

    def to_feed(self, graph):
        """Convert the graph into feed_dict.

        This function helps to convert graph data into feed dict
        for :code:`fluid.Excecutor` to run the model.

        Args:
            graph: the :code:`Graph` data object

        Return:
            A dictionary contains data holder names and its corresponding
            data.
        """
        feed_dict = {}
        src, dst, eid = graph.sorted_edges(sort_by="dst")
        indegree = graph.indegree()
        nodes = graph.nodes
        uniq_dst = nodes[indegree > 0]
        uniq_dst_count = indegree[indegree > 0]
Y
Yelrose 已提交
588 589
        uniq_dst_count = np.cumsum(uniq_dst_count, dtype='int32')
        uniq_dst_count = np.insert(uniq_dst_count, 0, 0)
Y
yelrose 已提交
590 591 592 593 594 595 596

        edge_feat = {}

        for key, value in graph.edge_feat.items():
            edge_feat[key] = value[eid]
        node_feat = graph.node_feat

Y
Yelrose 已提交
597 598 599 600 601 602 603 604
        feed_dict[self.__data_name_prefix + '/edges_src'] = src
        feed_dict[self.__data_name_prefix + '/edges_dst'] = dst
        feed_dict[self.__data_name_prefix + '/num_nodes'] = np.array(
            graph.num_nodes)
        feed_dict[self.__data_name_prefix + '/uniq_dst'] = uniq_dst
        feed_dict[self.__data_name_prefix + '/uniq_dst_count'] = uniq_dst_count
        feed_dict[self.__data_name_prefix + '/node_ids'] = graph.nodes
        feed_dict[self.__data_name_prefix + '/indegree'] = indegree
Y
yelrose 已提交
605 606

        for key in self._node_feat_tensor_dict:
Y
Yelrose 已提交
607 608
            feed_dict[self.__data_name_prefix + '/node_feat/' +
                      key] = node_feat[key]
Y
yelrose 已提交
609 610

        for key in self._edge_feat_tensor_dict:
Y
Yelrose 已提交
611 612
            feed_dict[self.__data_name_prefix + '/edge_feat/' +
                      key] = edge_feat[key]
Y
yelrose 已提交
613 614

        return feed_dict
Y
Yelrose 已提交
615 616 617 618 619 620

    @property
    def holder_list(self):
        """Return the holder list.
        """
        return self._holder_list