gpu_train.py 10.8 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" gpu_train
"""
import argparse
import time
import os
import glob

import numpy as np
import paddle.fluid as F
import paddle.fluid.layers as L
from pgl.utils.logger import log
from pgl.graph import Graph
from pgl.sample import graph_alias_sample_table
from pgl import data_loader

import mp_reader
from reader import GESReader
from model import GESModel


def get_file_list(path):
    """get_file_list
    """
    filelist = []
    if os.path.isfile(path):
        filelist = [path]
    elif os.path.isdir(path):
        filelist = [
            os.path.join(dp, f)
            for dp, dn, filenames in os.walk(path) for f in filenames
        ]
    else:
        raise ValueError(path + " not supported")
    return filelist


def build_graph(num_nodes, edge_path, output_path, undigraph=True):
    """ build_graph
    """
    edge_file = os.path.join(output_path, "edge.npy")
    edge_weight_file = os.path.join(output_path, "edge_weight.npy")
    alias_file = os.path.join(output_path, "alias.npy")
    events_file = os.path.join(output_path, "events.npy")
    if os.path.isfile(edge_file):
        edges = np.load(edge_file)
        edge_feat = dict()
        if os.path.isfile(edge_weight_file):
            log.info("Loading weight from cache")
            edge_feat["weight"] = np.load(edge_weight_file, allow_pickle=True)
        node_feat = dict()
        if os.path.isfile(alias_file):
            log.info("Loading alias from cache")
            node_feat["alias"] = np.load(alias_file, allow_pickle=True)
        if os.path.isfile(events_file):
            log.info("Loading events from cache")
            node_feat["events"] = np.load(events_file, allow_pickle=True)
    else:
        filelist = get_file_list(edge_path)
        edges, edge_weight = [], []
        log.info("Reading edge files")
        for name in filelist:
            with open(name) as inf:
                for line in inf:
                    slots = line.strip("\n").split()
                    edges.append([slots[0], slots[1]])
                    if len(slots) > 2:
                        edge_weight.append(slots[2])
        edges = np.array(edges, dtype="int64")
        assert num_nodes > edges.max(
        ), "Node id in any edges should be smaller then num_nodes!"

        log.info("Read edge files done.")
        edge_feat = dict()
        node_feat = dict()
        if len(edge_weight) == len(edges):
            edge_feat["weight"] = np.array(edge_weight, dtype="float32")

    if undigraph is True:
        edges = np.concatenate([edges, edges[:, [1, 0]]], 0)
        if "weight" in edge_feat:
            edge_feat["weight"] = np.concatenate(
                [edge_feat["weight"], edge_feat["weight"]],
                0).astype("float64")

    graph = Graph(num_nodes, edges, node_feat, edge_feat=edge_feat)
    log.info("Build graph done")
    graph.outdegree()
    log.info("Build graph index done")
    if "weight" in graph.edge_feat and "alias" not in graph.node_feat and "events" not in graph.node_feat:
        graph.node_feat["alias"], graph.node_feat[
            "events"] = graph_alias_sample_table(graph, "weight")
        log.info(
            "Build graph alias sample table done, and saving alias & evnets cache"
        )
        np.save(alias_file, graph.node_feat["alias"])
        np.save(events_file, graph.node_feat["events"])
    return graph


def optimization(base_lr, loss, train_steps, optimizer='adam'):
    """ optimization
    """
    decayed_lr = L.polynomial_decay(base_lr, train_steps, 0.0001)

    if optimizer == 'sgd':
        optimizer = F.optimizer.SGD(
            decayed_lr,
            regularization=F.regularizer.L2DecayRegularizer(
                regularization_coeff=0.0025))
    elif optimizer == 'adam':
        # dont use gpu's lazy mode
        optimizer = F.optimizer.Adam(decayed_lr)
    else:
        raise ValueError

    log.info('learning rate:%f' % (base_lr))
    optimizer.minimize(loss)


def build_gen_func(args, graph, node_feat):
    """ build_gen_func
    """
    num_sample_workers = args.num_sample_workers

    if args.walkpath_files is None:
        walkpath_files = [None for _ in range(num_sample_workers)]
    else:
        files = get_file_list(args.walkpath_files)
        walkpath_files = [[] for i in range(num_sample_workers)]
        for idx, f in enumerate(files):
            walkpath_files[idx % num_sample_workers].append(f)

    if args.train_files is None:
        train_files = [None for _ in range(num_sample_workers)]
    else:
        files = get_file_list(args.train_files)
        train_files = [[] for i in range(num_sample_workers)]
        for idx, f in enumerate(files):
            train_files[idx % num_sample_workers].append(f)

    gen_func_pool = [
        GESReader(
            graph,
            node_feat,
            batch_size=args.batch_size,
            walk_len=args.walk_len,
            win_size=args.win_size,
            neg_num=args.neg_num,
            neg_sample_type=args.neg_sample_type,
            walkpath_files=walkpath_files[i],
            train_files=train_files[i]) for i in range(num_sample_workers)
    ]
    if num_sample_workers == 1:
        gen_func = gen_func_pool[0]
    else:
        gen_func = mp_reader.multiprocess_reader(
            gen_func_pool, use_pipe=True, queue_size=100)
    return gen_func


def get_parallel_exe(program, loss):
    """ get_parallel_exe
    """
    exec_strategy = F.ExecutionStrategy()
    exec_strategy.num_threads = 1  #2 for fp32 4 for fp16
    exec_strategy.use_experimental_executor = True
    exec_strategy.num_iteration_per_drop_scope = 10  #important shit

    build_strategy = F.BuildStrategy()
    build_strategy.enable_inplace = True
    build_strategy.memory_optimize = True
    build_strategy.remove_unnecessary_lock = True

    #return compiled_prog
    train_exe = F.ParallelExecutor(
        use_cuda=True,
        loss_name=loss.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy,
        main_program=program)
    return train_exe


def train(train_exe, exe, program, loss, node2vec_pyreader, args, train_steps):
    """ train
    """
    trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
    step = 0
    while True:
        try:
            begin_time = time.time()
            loss_val, = train_exe.run(fetch_list=[loss])
            log.info("step %s: loss %.5f speed: %.5f s/step" %
                     (step, np.mean(loss_val), time.time() - begin_time))
            step += 1
        except F.core.EOFException:
            node2vec_pyreader.reset()

        if (step % args.steps_per_save == 0 or
                step == train_steps) and trainer_id == 0:

            model_save_dir = args.output_path
            model_path = os.path.join(model_save_dir, str(step))
            if not os.path.exists(model_save_dir):
                os.makedirs(model_save_dir)
            F.io.save_params(exe, model_path, program)

        if step == train_steps:
            break


def test_gen_speed(gen_func):
    """ test_gen_speed
    """
    cur_time = time.time()
    for idx, _ in enumerate(gen_func()):
        log.info("iter %s: %s s" % (idx, time.time() - cur_time))
        cur_time = time.time()
        if idx == 100:
            break


def main(args):
    """ main
    """
    import logging
    log.setLevel(logging.DEBUG)
    log.info("start")

    if args.dataset is not None:
        if args.dataset == "BlogCatalog":
            graph = data_loader.BlogCatalogDataset().graph
        else:
            raise ValueError(args.dataset + " dataset doesn't exists")
        log.info("Load buildin BlogCatalog dataset done.")
        node_feat = np.expand_dims(graph.node_feat["group_id"].argmax(-1),
                                   -1) + graph.num_nodes
        args.num_nodes = graph.num_nodes
        args.num_embedding = graph.num_nodes + graph.node_feat[
            "group_id"].shape[-1]
    else:
        graph = build_graph(args.num_nodes, args.edge_path, args.output_path)
        node_feat = np.load(args.node_feat_npy)

    model = GESModel(args.num_embedding, node_feat.shape[1] + 1,
                     args.hidden_size, args.neg_num, False, 2)
    pyreader = model.pyreader
    loss = model.forward()
    num_devices = len(F.cuda_places())

    train_steps = int(args.num_nodes * args.epoch / args.batch_size /
                      num_devices)
    log.info("Train steps: %s" % train_steps)
    optimization(args.lr * num_devices, loss, train_steps, args.optimizer)

    place = F.CUDAPlace(0)
    exe = F.Executor(place)
    exe.run(F.default_startup_program())

    gen_func = build_gen_func(args, graph, node_feat)

    pyreader.decorate_tensor_provider(gen_func)
    pyreader.start()
    train_prog = F.default_main_program()
    train_exe = get_parallel_exe(train_prog, loss)
    train(train_exe, exe, train_prog, loss, pyreader, args, train_steps)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Deepwalk')
    parser.add_argument("--hidden_size", type=int, default=64)
    parser.add_argument("--lr", type=float, default=0.025)
    parser.add_argument("--neg_num", type=int, default=5)
    parser.add_argument("--epoch", type=int, default=100)
    parser.add_argument("--batch_size", type=int, default=128)
    parser.add_argument("--walk_len", type=int, default=40)
    parser.add_argument("--win_size", type=int, default=5)
    parser.add_argument("--output_path", type=str, default="output")
    parser.add_argument("--num_sample_workers", type=int, default=1)
    parser.add_argument("--steps_per_save", type=int, default=3000)
    parser.add_argument("--num_nodes", type=int, default=10000)
    parser.add_argument("--num_embedding", type=int, default=10000)
    parser.add_argument("--edge_path", type=str, default="./graph_data")
    parser.add_argument("--walkpath_files", type=str, default=None)
    parser.add_argument("--train_files", type=str, default="./train_data")
    parser.add_argument("--node_feat_npy", type=str, default="./feat.npy")
    parser.add_argument("--dataset", type=str, default=None)
    parser.add_argument(
        "--neg_sample_type",
        type=str,
        default="average",
        choices=["average", "outdegree"])
    parser.add_argument(
        "--optimizer",
        type=str,
        required=False,
        choices=['adam', 'sgd'],
        default="adam")
    args = parser.parse_args()
    log.info(args)
    main(args)