gpu_train.py 5.3 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import time
import os

import numpy as np
import paddle.fluid as F
import paddle.fluid.layers as L
from pgl.utils.logger import log

from model import DeepwalkModel
from utils import build_graph
from utils import build_gen_func


def optimization(base_lr, loss, train_steps, optimizer='adam'):
    decayed_lr = L.polynomial_decay(base_lr, train_steps, 0.0001)

    if optimizer == 'sgd':
        optimizer = F.optimizer.SGD(
            decayed_lr,
            regularization=F.regularizer.L2DecayRegularizer(
                regularization_coeff=0.0025))
    elif optimizer == 'adam':
        # dont use gpu's lazy mode
        optimizer = F.optimizer.Adam(decayed_lr)
    else:
        raise ValueError

    log.info('learning rate:%f' % (base_lr))
    optimizer.minimize(loss)


def get_parallel_exe(program, loss):
    exec_strategy = F.ExecutionStrategy()
    exec_strategy.num_threads = 1  #2 for fp32 4 for fp16
    exec_strategy.use_experimental_executor = True
    exec_strategy.num_iteration_per_drop_scope = 1  #important shit

    build_strategy = F.BuildStrategy()
    build_strategy.enable_inplace = True
    build_strategy.memory_optimize = True
    build_strategy.remove_unnecessary_lock = True

    #return compiled_prog
    train_exe = F.ParallelExecutor(
        use_cuda=True,
        loss_name=loss.name,
        build_strategy=build_strategy,
        exec_strategy=exec_strategy,
        main_program=program)
    return train_exe


def train(train_exe, exe, program, loss, node2vec_pyreader, args, train_steps):
    trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
    step = 0
    while True:
        try:
            begin_time = time.time()
            loss_val, = train_exe.run(fetch_list=[loss])
            log.info("step %s: loss %.5f speed: %.5f s/step" %
                     (step, np.mean(loss_val), time.time() - begin_time))
            step += 1
        except F.core.EOFException:
            node2vec_pyreader.reset()

        if (step == train_steps or
                step % args.steps_per_save == 0) and trainer_id == 0:

            model_save_dir = args.output_path
            model_path = os.path.join(model_save_dir, str(step))
            if not os.path.exists(model_save_dir):
                os.makedirs(model_save_dir)
            F.io.save_params(exe, model_path, program)
        if step == train_steps:
            break


def main(args):
    import logging
    log.setLevel(logging.DEBUG)
    log.info("start")

    num_devices = len(F.cuda_places())
    model = DeepwalkModel(args.num_nodes, args.hidden_size, args.neg_num,
                          False, False, 1.)
    pyreader = model.pyreader
    loss = model.forward()

    train_steps = int(args.num_nodes * args.epoch / args.batch_size /
                      num_devices)
    optimization(args.lr * num_devices, loss, train_steps, args.optimizer)

    place = F.CUDAPlace(0)
    exe = F.Executor(place)
    exe.run(F.default_startup_program())

    graph = build_graph(args.num_nodes, args.edge_path)
    gen_func = build_gen_func(args, graph)

    pyreader.decorate_tensor_provider(gen_func)
    pyreader.start()

    train_prog = F.default_main_program()

    if args.warm_start_from_dir is not None:
        F.io.load_params(exe, args.warm_start_from_dir, train_prog)

    train_exe = get_parallel_exe(train_prog, loss)
    train(train_exe, exe, train_prog, loss, pyreader, args, train_steps)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Deepwalk')
    parser.add_argument("--hidden_size", type=int, default=64)
    parser.add_argument("--lr", type=float, default=0.025)
    parser.add_argument("--neg_num", type=int, default=5)
    parser.add_argument("--epoch", type=int, default=100)
    parser.add_argument("--batch_size", type=int, default=128)
    parser.add_argument("--walk_len", type=int, default=40)
    parser.add_argument("--win_size", type=int, default=5)
    parser.add_argument("--output_path", type=str, default="output")
    parser.add_argument("--num_sample_workers", type=int, default=1)
    parser.add_argument("--steps_per_save", type=int, default=3000)
    parser.add_argument("--num_nodes", type=int, default=10000)
    parser.add_argument("--edge_path", type=str, default="./graph_data")
    parser.add_argument("--walkpath_files", type=str, default=None)
    parser.add_argument("--train_files", type=str, default="./train_data")
    parser.add_argument("--warm_start_from_dir", type=str, default=None)
    parser.add_argument(
        "--neg_sample_type",
        type=str,
        default="average",
        choices=["average", "outdegree"])
    parser.add_argument(
        "--optimizer",
        type=str,
        required=False,
        choices=['adam', 'sgd'],
        default="adam")
    args = parser.parse_args()
    log.info(args)
    main(args)