train.py 5.6 KB
Newer Older
F
fengshikun01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#-*- coding: utf-8 -*-
import pgl
from pgl import data_loader
from pgl.utils.logger import log
import paddle.fluid as fluid
import numpy as np
import time
import argparse
from pgl.utils.log_writer import LogWriter # vdl
from model import DeeperGCN

def load(name):
    if name == 'cora':
        dataset = data_loader.CoraDataset()
    elif name == "pubmed":
        dataset = data_loader.CitationDataset("pubmed", symmetry_edges=False)
    elif name == "citeseer":
        dataset = data_loader.CitationDataset("citeseer", symmetry_edges=False)
    else:
        raise ValueError(name + " dataset doesn't exists")
    return dataset


def main(args):
    # vdl
    writer = LogWriter("checkpoints/train_history")

    dataset = load(args.dataset)
    place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
    train_program = fluid.Program()
    startup_program = fluid.Program()
    test_program = fluid.Program()
    hidden_size = 64
F
fengshikun01 已提交
47
    num_layers = 7
F
fengshikun01 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105

    with fluid.program_guard(train_program, startup_program):
        gw = pgl.graph_wrapper.GraphWrapper(
            name="graph",
            node_feat=dataset.graph.node_feat_info())
        
        output = DeeperGCN(gw, 
                gw.node_feat["words"],
                num_layers,
                hidden_size,
                dataset.num_classes,
                "deepercnn",
                0.1)

        node_index = fluid.layers.data(
            "node_index",
            shape=[None, 1],
            dtype="int64",
            append_batch_size=False)
        node_label = fluid.layers.data(
            "node_label",
            shape=[None, 1],
            dtype="int64",
            append_batch_size=False)

        pred = fluid.layers.gather(output, node_index)
        loss, pred = fluid.layers.softmax_with_cross_entropy(
            logits=pred, label=node_label, return_softmax=True)
        acc = fluid.layers.accuracy(input=pred, label=node_label, k=1)
        loss = fluid.layers.mean(loss)

    test_program = train_program.clone(for_test=True)
    with fluid.program_guard(train_program, startup_program):
        adam = fluid.optimizer.Adam(
            regularization=fluid.regularizer.L2DecayRegularizer(
                regularization_coeff=0.0005),
            learning_rate=0.005)
        adam.minimize(loss)

    exe = fluid.Executor(place)
    exe.run(startup_program)

    feed_dict = gw.to_feed(dataset.graph)

    train_index = dataset.train_index
    train_label = np.expand_dims(dataset.y[train_index], -1)
    train_index = np.expand_dims(train_index, -1)

    val_index = dataset.val_index
    val_label = np.expand_dims(dataset.y[val_index], -1)
    val_index = np.expand_dims(val_index, -1)

    test_index = dataset.test_index
    test_label = np.expand_dims(dataset.y[test_index], -1)
    test_index = np.expand_dims(test_index, -1)
    
    # get beta param
    beta_param_list = []
F
fengshikun01 已提交
106
    for param in fluid.io.get_program_parameter(train_program):
F
fengshikun01 已提交
107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
        if param.name.endswith("_beta"):
            beta_param_list.append(param)

    dur = []
    for epoch in range(200):
        if epoch >= 3:
            t0 = time.time()
        feed_dict["node_index"] = np.array(train_index, dtype="int64")
        feed_dict["node_label"] = np.array(train_label, dtype="int64")
        train_loss, train_acc = exe.run(train_program,
                                        feed=feed_dict,
                                        fetch_list=[loss, acc],
                                        return_numpy=True)
        for param in beta_param_list:
            beta = np.array(fluid.global_scope().find_var(param.name).get_tensor())
F
fengshikun01 已提交
122
            writer.add_scalar("beta/"+param.name, beta, epoch)
F
fengshikun01 已提交
123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155

        if epoch >= 3:
            time_per_epoch = 1.0 * (time.time() - t0)
            dur.append(time_per_epoch)

        feed_dict["node_index"] = np.array(val_index, dtype="int64")
        feed_dict["node_label"] = np.array(val_label, dtype="int64")
        val_loss, val_acc = exe.run(test_program,
                                    feed=feed_dict,
                                    fetch_list=[loss, acc],
                                    return_numpy=True)

        log.info("Epoch %d " % epoch + "(%.5lf sec) " % np.mean(dur) +
                 "Train Loss: %f " % train_loss + "Train Acc: %f " % train_acc
                 + "Val Loss: %f " % val_loss + "Val Acc: %f " % val_acc)

    feed_dict["node_index"] = np.array(test_index, dtype="int64")
    feed_dict["node_label"] = np.array(test_label, dtype="int64")
    test_loss, test_acc = exe.run(test_program,
                                  feed=feed_dict,
                                  fetch_list=[loss, acc],
                                  return_numpy=True)
    log.info("Accuracy: %f" % test_acc)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='DeeperGCN')
    parser.add_argument(
        "--dataset", type=str, default="cora", help="dataset (cora, pubmed)")
    parser.add_argument("--use_cuda", action='store_true', help="use_cuda")
    args = parser.parse_args()
    log.info(args)
    main(args)