train.py 5.4 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pgl
import model# import LabelGraphGCN
from pgl import data_loader
from pgl.utils.logger import log
import paddle.fluid as fluid
import numpy as np
import time
import argparse
from build_model import build_model
import yaml
from easydict import EasyDict as edict



def load(name):
    if name == 'cora':
        dataset = data_loader.CoraDataset()
    elif name == "pubmed":
        dataset = data_loader.CitationDataset("pubmed", symmetry_edges=False)
    elif name == "citeseer":
        dataset = data_loader.CitationDataset("citeseer", symmetry_edges=False)
    else:
        raise ValueError(name + " dataset doesn't exists")
    return dataset


def main(args, config):
    dataset = load(args.dataset)

    indegree = dataset.graph.indegree()
    norm = np.zeros_like(indegree, dtype="float32")
    norm[indegree > 0] = np.power(indegree[indegree > 0], -0.5)
    dataset.graph.node_feat["norm"] = np.expand_dims(norm, -1)

    place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
    train_program = fluid.default_main_program()
    startup_program = fluid.default_startup_program()

    with fluid.program_guard(train_program, startup_program):
        with fluid.unique_name.guard():
            gw, loss, acc = build_model(dataset,
                                config=config,
                                phase="train",
                                main_prog=train_program)

    test_program = fluid.Program()
    with fluid.program_guard(test_program, startup_program):
        with fluid.unique_name.guard():
            _gw, v_loss, v_acc = build_model(dataset,
                config=config,
                phase="test",
                main_prog=test_program)
Y
Yelrose 已提交
66

Y
Yelrose 已提交
67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89
    test_program = test_program.clone(for_test=True)

    exe = fluid.Executor(place)
    exe.run(startup_program)


    train_index = dataset.train_index
    train_label = np.expand_dims(dataset.y[train_index], -1)
    train_index = np.expand_dims(train_index, -1)
    log.info("Number of Train %s" % len(train_index))

    val_index = dataset.val_index
    val_label = np.expand_dims(dataset.y[val_index], -1)
    val_index = np.expand_dims(val_index, -1)

    test_index = dataset.test_index
    test_label = np.expand_dims(dataset.y[test_index], -1)
    test_index = np.expand_dims(test_index, -1)

    dur = []
    cal_val_acc = []
    cal_test_acc = []
 
Y
Yelrose 已提交
90
    for epoch in range(args.epoch):
Y
Yelrose 已提交
91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126
        if epoch >= 3:
            t0 = time.time()
        feed_dict = gw.to_feed(dataset.graph)
        feed_dict["node_index"] = np.array(train_index, dtype="int64")
        feed_dict["node_label"] = np.array(train_label, dtype="int64")
        train_loss, train_acc = exe.run(train_program,
                                        feed=feed_dict,
                                        fetch_list=[loss, acc],
                                        return_numpy=True)

        if epoch >= 3:
            time_per_epoch = 1.0 * (time.time() - t0)
            dur.append(time_per_epoch)

        feed_dict = gw.to_feed(dataset.graph)
        feed_dict["node_index"] = np.array(val_index, dtype="int64")
        feed_dict["node_label"] = np.array(val_label, dtype="int64")
        val_loss, val_acc = exe.run(test_program,
                                    feed=feed_dict,
                                    fetch_list=[v_loss, v_acc],
                                    return_numpy=True)

        val_loss = val_loss[0]
        val_acc = val_acc[0]
        cal_val_acc.append(val_acc)

        feed_dict["node_index"] = np.array(test_index, dtype="int64")
        feed_dict["node_label"] = np.array(test_label, dtype="int64")
        test_loss, test_acc = exe.run(test_program,
                                  feed=feed_dict,
                                  fetch_list=[v_loss, v_acc],
                                  return_numpy=True)

        test_loss = test_loss[0]
        test_acc = test_acc[0]
        cal_test_acc.append(test_acc)
Y
Yelrose 已提交
127 128

        log.info("Epoch %d " % epoch +
Y
Yelrose 已提交
129
                 "Train Loss: %f " % train_loss + "Train Acc: %f " % train_acc
Y
Yelrose 已提交
130
                 + "Val Loss: %f " % val_loss + "Val Acc: %f " % val_acc)
Y
Yelrose 已提交
131 132 133 134 135 136 137 138 139 140 141 142
     
    cal_val_acc = np.array(cal_val_acc)
    log.info("Model: %s Best Test Accuracy: %f" % (config.model_name,
                  cal_test_acc[np.argmax(cal_val_acc)]))


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='Benchmarking Citation Network')
    parser.add_argument(
        "--dataset", type=str, default="cora", help="dataset (cora, pubmed)")
    parser.add_argument("--use_cuda", action='store_true', help="use_cuda")
    parser.add_argument("--conf", type=str, help="config file for models")
Y
Yelrose 已提交
143
    parser.add_argument("--epoch", type=int, default=200, help="Epoch")
Y
Yelrose 已提交
144 145 146 147
    args = parser.parse_args()
    config = edict(yaml.load(open(args.conf), Loader=yaml.FullLoader))
    log.info(args)
    main(args, config)