model.py 8.9 KB
Newer Older
L
liweibin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file implement the GATNE model.
"""

import numpy as np
import math
import logging

import paddle.fluid as fluid
import paddle.fluid.layers as fl
L
liweibin 已提交
24
from pgl import heter_graph_wrapper
L
liweibin 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116


class GATNE(object):
    """Implementation of GATNE model.

    Args:
        config: dict, some configure parameters.
        dataset: instance of Dataset class
        place: GPU or CPU place 
    """

    def __init__(self, config, dataset, place):
        logging.info(['model is: ', self.__class__.__name__])
        self.config = config
        self.graph = dataset.graph
        self.placce = place
        self.edge_types = sorted(self.graph.edge_types_info())
        logging.info('edge_types in model: %s' % str(self.edge_types))
        neg_num = dataset.config['neg_num']

        # hyper parameters
        self.num_nodes = self.graph.num_nodes
        self.embedding_size = self.config['dimensions']
        self.embedding_u_size = self.config['edge_dim']
        self.dim_a = self.config['att_dim']
        self.att_head = self.config['att_head']
        self.edge_type_count = len(self.edge_types)
        self.u_num = self.edge_type_count

        self.gw = heter_graph_wrapper.HeterGraphWrapper(
            name="heter_graph",
            edge_types=self.graph.edge_types_info(),
            node_feat=self.graph.node_feat_info(),
            edge_feat=self.graph.edge_feat_info())

        self.train_inputs = fl.data(
            'train_inputs', shape=[None], dtype='int64')

        self.train_labels = fl.data(
            'train_labels', shape=[None, 1, 1], dtype='int64')

        self.train_types = fl.data(
            'train_types', shape=[None, 1], dtype='int64')

        self.train_negs = fl.data(
            'train_negs', shape=[None, neg_num, 1], dtype='int64')

        self.forward()

    def forward(self):
        """Build the GATNE net.
        """
        param_attr_init = fluid.initializer.Uniform(
            low=-1.0, high=1.0, seed=np.random.randint(100))
        embed_param_attrs = fluid.ParamAttr(
            name='Base_node_embed', initializer=param_attr_init)

        # node_embeddings
        base_node_embed = fl.embedding(
            input=fl.reshape(
                self.train_inputs, shape=[-1, 1]),
            size=[self.num_nodes, self.embedding_size],
            param_attr=embed_param_attrs)

        node_features = []
        for edge_type in self.edge_types:
            param_attr_init = fluid.initializer.Uniform(
                low=-1.0, high=1.0, seed=np.random.randint(100))
            embed_param_attrs = fluid.ParamAttr(
                name='%s_node_embed' % edge_type, initializer=param_attr_init)

            features = fl.embedding(
                input=self.gw[edge_type].node_feat['index'],
                size=[self.num_nodes, self.embedding_u_size],
                param_attr=embed_param_attrs)

            node_features.append(features)

        # mp_output: list of embedding(self.num_nodes, dim)
        mp_output = self.message_passing(self.gw, self.edge_types,
                                         node_features)

        # U : (num_type[m], num_nodes, dim[s])
        node_type_embed = fl.stack(mp_output, axis=0)

        # U : (num_nodes, num_type[m], dim[s])
        node_type_embed = fl.transpose(node_type_embed, perm=[1, 0, 2])

        #gather node_type_embed from train_inputs
        node_type_embed = fl.gather(node_type_embed, self.train_inputs)

        # M_r
W
Webbley 已提交
117 118 119
        tn_initializer = fluid.initializer.TruncatedNormalInitializer(
            loc=0.0, scale=1.0 / math.sqrt(self.embedding_size))

L
liweibin 已提交
120 121 122 123 124
        trans_weights = fl.create_parameter(
            shape=[
                self.edge_type_count, self.embedding_u_size,
                self.embedding_size // self.att_head
            ],
W
Webbley 已提交
125
            default_initializer=tn_initializer,
L
liweibin 已提交
126 127 128 129 130 131
            dtype='float32',
            name='trans_w')

        # W_r
        trans_weights_s1 = fl.create_parameter(
            shape=[self.edge_type_count, self.embedding_u_size, self.dim_a],
W
Webbley 已提交
132
            default_initializer=tn_initializer,
L
liweibin 已提交
133 134 135 136 137 138
            dtype='float32',
            name='trans_w_s1')

        # w_r
        trans_weights_s2 = fl.create_parameter(
            shape=[self.edge_type_count, self.dim_a, self.att_head],
W
Webbley 已提交
139
            default_initializer=tn_initializer,
L
liweibin 已提交
140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
            dtype='float32',
            name='trans_w_s2')

        trans_w = fl.gather(trans_weights, self.train_types)
        trans_w_s1 = fl.gather(trans_weights_s1, self.train_types)
        trans_w_s2 = fl.gather(trans_weights_s2, self.train_types)

        attention = self.attention(node_type_embed, trans_w_s1, trans_w_s2)
        node_type_embed = fl.matmul(attention, node_type_embed)
        node_embed = base_node_embed + fl.reshape(
            fl.matmul(node_type_embed, trans_w), [-1, self.embedding_size])

        self.last_node_embed = fl.l2_normalize(node_embed, axis=1)

        nce_weight_initializer = fluid.initializer.TruncatedNormalInitializer(
            loc=0.0, scale=1.0 / math.sqrt(self.embedding_size))
        nce_weight_attrs = fluid.ParamAttr(
            name='nce_weight', initializer=nce_weight_initializer)

        weight_pos = fl.embedding(
            input=self.train_labels,
            size=[self.num_nodes, self.embedding_size],
            param_attr=nce_weight_attrs)
        weight_neg = fl.embedding(
            input=self.train_negs,
            size=[self.num_nodes, self.embedding_size],
            param_attr=nce_weight_attrs)
        tmp_node_embed = fl.unsqueeze(self.last_node_embed, axes=[1])
        pos_logits = fl.matmul(
            tmp_node_embed, weight_pos, transpose_y=True)  # [B, 1, 1]

        neg_logits = fl.matmul(
            tmp_node_embed, weight_neg, transpose_y=True)  # [B, 1, neg_num]

        pos_score = fl.squeeze(pos_logits, axes=[1])
        pos_score = fl.clip(pos_score, min=-10, max=10)
        pos_score = -1.0 * fl.logsigmoid(pos_score)

        neg_score = fl.squeeze(neg_logits, axes=[1])
        neg_score = fl.clip(neg_score, min=-10, max=10)
        neg_score = -1.0 * fl.logsigmoid(-1.0 * neg_score)

        neg_score = fl.reduce_sum(neg_score, dim=1, keep_dim=True)
        self.loss = fl.reduce_mean(pos_score + neg_score)

    def attention(self, node_type_embed, trans_w_s1, trans_w_s2):
        """Calculate attention weights.
        """
        attention = fl.tanh(fl.matmul(node_type_embed, trans_w_s1))
        attention = fl.matmul(attention, trans_w_s2)
        attention = fl.reshape(attention, [-1, self.u_num])
        attention = fl.softmax(attention)
        attention = fl.reshape(attention, [-1, self.att_head, self.u_num])
        return attention

    def message_passing(self, gw, edge_types, features, name=''):
        """Message passing from source nodes to dstination nodes
        """

        def __message(src_feat, dst_feat, edge_feat):
            """send function
            """
            return src_feat['h']

        def __reduce(feat):
            """recv function
            """
            return fluid.layers.sequence_pool(feat, pool_type='average')

        if not isinstance(edge_types, list):
            edge_types = [edge_types]

        if not isinstance(features, list):
            features = [features]

        assert len(edge_types) == len(features)

        output = []
        for i in range(len(edge_types)):
            msg = gw[edge_types[i]].send(
                __message, nfeat_list=[('h', features[i])])
            neigh_feat = gw[edge_types[i]].recv(msg, __reduce)
            neigh_feat = fl.fc(neigh_feat,
                               size=neigh_feat.shape[-1],
                               name='neigh_fc_%d' % (i),
                               act='sigmoid')
            slf_feat = fl.fc(features[i],
                             size=neigh_feat.shape[-1],
                             name='slf_fc_%d' % (i),
                             act='sigmoid')

            out = fluid.layers.concat([slf_feat, neigh_feat], axis=1)
            out = fl.fc(out, size=neigh_feat.shape[-1], name='fc', act=None)
            out = fluid.layers.l2_normalize(out, axis=1)
            output.append(out)

        # list of matrix
        return output

    def backward(self, global_steps, opt_config):
        """Build the optimizer.
        """
        self.lr = fl.polynomial_decay(opt_config['lr'], global_steps, 0.001)
        adam = fluid.optimizer.Adam(learning_rate=self.lr)
        adam.minimize(self.loss)