README.md 967 字节
Newer Older
W
Webbley 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# Graph Property Prediction for Open Graph Benchmark (OGB)

[The Open Graph Benchmark (OGB)](https://ogb.stanford.edu/) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Here we complete the Graph Property Prediction task based on PGL.

### Requirements

- paddlpaddle 1.7.1
- pgl 1.0.1
- ogb

NOTE: To install ogb that is fited for this project, run below command to install ogb
```
git clone https://github.com/snap-stanford/ogb.git
git checkout 482c40bc9f31fe25f9df5aa11c8fb657bd2b1621
python setup.py install
```

### How to run
W
Webbley 已提交
19
For example, use GPU to train model on ogbg-molhiv dataset and ogb-molpcba dataset.
W
Webbley 已提交
20
```
W
Webbley 已提交
21 22 23 24 25
export CUDA_VISIBLE_DEVICES=1
python -u main.py --config hiv_config.yaml

export CUDA_VISIBLE_DEVICES=2
python -u main.py --config pcba_config.yaml
W
Webbley 已提交
26
```
27 28 29 30 31 32

### Experiment results

| model | hiv (rocauc)| pcba (prcauc)|
|-------|-------------|--------------|
| GIN   |0.7719 (0.0079) | 0.2232 (0.0018) |