train.py 13.3 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""train.py
"""
import argparse
import time
import glob
import os

import numpy as np

import pgl
from pgl.utils.logger import log
from pgl.utils import paddle_helper
import paddle
import paddle.fluid as fluid
import tqdm

import reader
import model


def get_layer(layer_type, gw, feature, hidden_size, act, name, is_test=False):
    """get_layer"""
    return getattr(model, layer_type)(gw, feature, hidden_size, act, name)


def load_pos_neg(data_path):
    """load_pos_neg"""
    train_eid = []
    train_src = []
    train_dst = []
    with open(data_path) as f:
        eid = 0
        for idx, line in tqdm.tqdm(enumerate(f)):
            src, dst = line.strip().split('\t')
            train_src.append(int(src))
            train_dst.append(int(dst))
            train_eid.append(int(eid))
            eid += 1
    # concate the the pos data and neg data
    train_eid = np.array(train_eid, dtype="int64")
    train_src = np.array(train_src, dtype="int64")
    train_dst = np.array(train_dst, dtype="int64")

    returns = {"train_data": (train_src, train_dst, train_eid), }
    return returns


def binary_op(u_embed, v_embed, binary_op_type):
    """binary_op"""
    if binary_op_type == "Average":
        edge_embed = (u_embed + v_embed) / 2
    elif binary_op_type == "Hadamard":
        edge_embed = u_embed * v_embed
    elif binary_op_type == "Weighted-L1":
        edge_embed = fluid.layers.abs(u_embed - v_embed)
    elif binary_op_type == "Weighted-L2":
        edge_embed = (u_embed - v_embed) * (u_embed - v_embed)
    else:
        raise ValueError(binary_op_type + " binary_op_type doesn't exists")
    return edge_embed


class RetDict(object):
    """RetDict"""
    pass


def build_graph_model(args):
    """build_graph_model"""
    node_feature_info = [('index', [None], np.dtype('int64'))]

    place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
    graph_wrappers = []
    feed_list = []

    graph_wrappers.append(
        pgl.graph_wrapper.GraphWrapper(
            "layer_0", fluid.CPUPlace(), node_feat=node_feature_info))
    #edge_feat=[("f", [None, 1], "float32")]))

    num_embed = args.num_nodes

    num_layers = args.num_layers

    src_index = fluid.layers.data(
        "src_index", shape=[None], dtype="int64", append_batch_size=False)

    dst_index = fluid.layers.data(
        "dst_index", shape=[None], dtype="int64", append_batch_size=False)

    feature = fluid.layers.embedding(
        input=fluid.layers.reshape(graph_wrappers[0].node_feat['index'],
                                   [-1, 1]),
        size=(num_embed + 1, args.hidden_size),
        is_sparse=args.is_sparse,
        is_distributed=args.is_distributed)

    features = [feature]
    ret_dict = RetDict()
    ret_dict.graph_wrappers = graph_wrappers
    edge_data = [src_index, dst_index]
    feed_list.extend(edge_data)
    ret_dict.feed_list = feed_list

    for i in range(num_layers):
        if i == num_layers - 1:
            act = None
        else:
            act = "leaky_relu"
        feature = get_layer(
            args.layer_type,
            graph_wrappers[0],
            feature,
            args.hidden_size,
            act,
            name="%s_%s" % (args.layer_type, i))
        features.append(feature)

    src_feat = fluid.layers.gather(features[-1], src_index)
    src_feat = fluid.layers.fc(src_feat,
                               args.hidden_size,
                               bias_attr=None,
                               param_attr=fluid.ParamAttr(name="feat"))
    dst_feat = fluid.layers.gather(features[-1], dst_index)
    dst_feat = fluid.layers.fc(dst_feat,
                               args.hidden_size,
                               bias_attr=None,
                               param_attr=fluid.ParamAttr(name="feat"))
    if args.phase == "predict":
        node_id = fluid.layers.data(
            "node_id", shape=[None, 1], dtype="int64", append_batch_size=False)
        ret_dict.src_feat = src_feat
        ret_dict.dst_feat = dst_feat
        ret_dict.id = node_id
        return ret_dict

    batch_size = args.batch_size
    batch_negative_label = fluid.layers.reshape(
        fluid.layers.range(0, batch_size, 1, "int64"), [-1, 1])
    batch_negative_label = fluid.layers.one_hot(batch_negative_label,
                                                batch_size)
    batch_loss_weight = (batch_negative_label *
                         (batch_size - 2) + 1.0) / (batch_size - 1)
    batch_loss_weight.stop_gradient = True
    batch_negative_label = batch_negative_label
    batch_negative_label = fluid.layers.cast(
        batch_negative_label, dtype="float32")
    batch_negative_label.stop_gradient = True

    cos_theta = fluid.layers.matmul(src_feat, dst_feat, transpose_y=True)

    # Calc Loss
    loss = fluid.layers.sigmoid_cross_entropy_with_logits(
        x=cos_theta, label=batch_negative_label)
    loss = loss * batch_loss_weight
    #loss = fluid.layers.reduce_sum(loss, -1)
    loss = fluid.layers.mean(loss)

    # Calc AUC
    proba = fluid.layers.sigmoid(cos_theta)
    proba = fluid.layers.reshape(proba, [-1, 1])
    proba = fluid.layers.concat([proba * -1 + 1, proba], axis=1)
    gold_label = fluid.layers.reshape(batch_negative_label, [-1, 1])
    gold_label = fluid.layers.cast(gold_label, "int64")
    auc, batch_auc_out, [batch_stat_pos, batch_stat_neg, stat_pos, stat_neg] = \
         fluid.layers.auc(input=proba, label=gold_label, curve='ROC', )

    ret_dict.loss = loss
    ret_dict.auc = batch_auc_out
    return ret_dict


def run_epoch(
        py_reader,
        exe,
        program,
        prefix,
        model_dict,
        epoch,
        batch_size,
        log_per_step=100,
        save_per_step=10000, ):
    """run_epoch"""
    batch = 0
    start = time.time()

    batch_end = time.time()

    for batch_feed_dict in py_reader():
        if prefix == "train":
            if batch_feed_dict["src_index"].shape[0] != batch_size:
                log.warning(
                    'batch_feed_dict["src_index"].shape[0] != 1024, continue')
                continue
        batch_start = time.time()
        batch += 1
        batch_loss, batch_auc = exe.run(
            program,
            feed=batch_feed_dict,
            fetch_list=[model_dict.loss.name, model_dict.auc.name])

        batch_end = time.time()
        if batch % log_per_step == 0:
            log.info(
                "Batch %s %s-Loss %s \t %s-Auc  %s \t Speed(per batch) %.5lf sec"
                % (batch, prefix, np.mean(batch_loss), prefix,
                   np.mean(batch_auc), batch_end - batch_start))
        if batch != 0 and batch % save_per_step == 0:
            fluid.io.save_params(
                exe, dirname='checkpoint', main_program=program)
    fluid.io.save_params(exe, dirname='checkpoint', main_program=program)


def run_predict_epoch(py_reader,
                      exe,
                      program,
                      prefix,
                      model_dict,
                      num_nodes,
                      hidden_size,
                      log_per_step=100):
    """run_predict_epoch"""
    batch = 0
    start = time.time()
    #use the parallel executor to speed up
    batch_end = time.time()
    all_feat = np.zeros((num_nodes, hidden_size), dtype="float32")

    for batch_feed_dict in tqdm.tqdm(py_reader()):
        batch_start = time.time()
        batch += 1
        batch_src_feat, batch_id = exe.run(
            program,
            feed=batch_feed_dict,
            fetch_list=[model_dict.src_feat.name, model_dict.id.name])

        for ind, id in enumerate(batch_id):
            all_feat[id] = batch_src_feat[ind]
    np.save("emb.npy", all_feat)


def main(args):
    """main"""
    place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
    exe = fluid.Executor(place)

    train_program = fluid.Program()
    startup_program = fluid.Program()

    with fluid.program_guard(train_program, startup_program):
        ret_dict = build_graph_model(args=args)

    val_program = train_program.clone(for_test=True)
    if args.phase == "train":
        with fluid.program_guard(train_program, startup_program):
            adam = fluid.optimizer.Adam(learning_rate=args.lr)
            adam.minimize(ret_dict.loss)
    # reset the place according to role of parameter server
    exe.run(startup_program)

    with open(args.data_path) as f:
        log.info("Begin Load Graph")
        src = []
        dst = []
        for idx, line in tqdm.tqdm(enumerate(f)):
            s, d = line.strip().split()
            src.append(s)
            dst.append(d)
            dst.append(s)
            src.append(d)
    src = np.array(src, dtype="int64").reshape(-1, 1)
    dst = np.array(dst, dtype="int64").reshape(-1, 1)
    edges = np.hstack([src, dst])

    log.info("Begin Build Index")
    ret_dict.graph = pgl.graph.Graph(num_nodes=args.num_nodes, edges=edges)
    ret_dict.graph.indegree()
    log.info("End Build Index")

    if args.phase == "train":
        #just the worker, load the sample
        data = load_pos_neg(args.data_path)

        feed_name_list = [var.name for var in ret_dict.feed_list]
        train_iter = reader.graph_reader(
            args.num_layers,
            ret_dict.graph_wrappers,
            batch_size=args.batch_size,
            data=data['train_data'],
            samples=args.samples,
            num_workers=args.sample_workers,
            feed_name_list=feed_name_list,
            use_pyreader=args.use_pyreader,
            graph=ret_dict.graph)

        # get PyReader 
        for epoch in range(args.epoch):
            epoch_start = time.time()
            try:
                run_epoch(
                    train_iter,
                    program=train_program,
                    exe=exe,
                    prefix="train",
                    model_dict=ret_dict,
                    epoch=epoch,
                    batch_size=args.batch_size,
                    log_per_step=10)
                epoch_end = time.time()
                print("Epoch: {0}, Train total expend: {1} ".format(
                    epoch, epoch_end - epoch_start))
            except Exception as e:
                log.info("Run Epoch Error %s" % e)
            fluid.io.save_params(
                exe,
                dirname=args.checkpoint + '_%s' % epoch,
                main_program=train_program)

            log.info("EPOCH END")

        log.info("RUN FINISH")
    elif args.phase == "predict":
        fluid.io.load_params(
            exe,
            dirname=args.checkpoint + '_%s' % args.epoch,
            main_program=val_program)
        test_src = np.arange(0, args.num_nodes, dtype="int64")
        feed_name_list = [var.name for var in ret_dict.feed_list]
        predict_iter = reader.graph_reader(
            args.num_layers,
            ret_dict.graph_wrappers,
            batch_size=args.batch_size,
            data=(test_src, test_src, test_src, test_src),
            samples=args.samples,
            num_workers=args.sample_workers,
            feed_name_list=feed_name_list,
            use_pyreader=args.use_pyreader,
            graph=ret_dict.graph,
            predict=True)
        run_predict_epoch(
            predict_iter,
            program=val_program,
            exe=exe,
            prefix="predict",
            hidden_size=args.hidden_size,
            model_dict=ret_dict,
            num_nodes=args.num_nodes,
            log_per_step=100)
        log.info("EPOCH END")


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='graphsage')
    parser.add_argument(
        "--use_cuda", action='store_true', help="use_cuda", default=False)
    parser.add_argument("--layer_type", type=str, default="graphsage_mean")
    parser.add_argument("--epoch", type=int, default=1)
    parser.add_argument("--hidden_size", type=int, default=128)
    parser.add_argument("--batch_size", type=int, default=1024)
    parser.add_argument("--lr", type=float, default=0.001)
    parser.add_argument("--num_layers", type=int, default=2)
    parser.add_argument("--data_path", type=str, required=True)
    parser.add_argument("--checkpoint", type=str, default="model_ckpt")
    parser.add_argument("--cache_path", type=str, default="./tmp")
    parser.add_argument("--phase", type=str, default="train")
    parser.add_argument("--digraph", action='store_true', default=False)
    parser.add_argument('--samples', nargs='+', type=int, default=[10, 10])
    parser.add_argument("--sample_workers", type=int, default=10)
    parser.add_argument("--num_nodes", type=int, required=True)
    parser.add_argument("--is_sparse", action='store_true', default=False)
    parser.add_argument("--is_distributed", action='store_true', default=False)
    parser.add_argument("--real_graph", action='store_true', default=True)
    parser.add_argument("--use_pyreader", action='store_true', default=False)
    args = parser.parse_args()
    log.info(args)
    main(args)