struc2vec.py 20.6 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
struc2vec.py
"""
import argparse
import math
import random
import numpy as np
import pgl
from pgl import graph
from pgl.graph_kernel import alias_sample_build_table
from pgl.sample import alias_sample
from data_loader import EdgeDataset
from classify import train_lr_model
from sklearn_classify import train_lr_l2_model


def selectDegrees(degree_root, index_left, index_right, degree_left,
                  degree_right):
    """
    Select the which degree to be next step.
    """

    if index_left == -1:
        degree_now = degree_right
    elif index_right == -1:
        degree_now = degree_left
    elif (abs(degree_left - degree_root) < abs(degree_right - degree_root)):
        degree_now = degree_left
    else:
        degree_now = degree_right

    return degree_now


class StrucVecGraph():
    """
    The class wrapper the PGL graph, the class involve the funtions to implement struc2vec algorithm.
    """

    def __init__(self, graph, nodes, opt1, opt2, opt3, depth, num_walks,
                 walk_depth):
        self.graph = graph
        self.nodes = nodes
        self.opt1 = opt1
        self.opt2 = opt2
        self.opt3 = opt3
        self.num_walks = num_walks
        self.walk_depth = walk_depth
        self.tag = args.tag
        self.degree_list = dict()
        self.degree2nodes = dict()
        self.node2degree = dict()
        self.distance = dict()
        self.degrees_sorted = None
        self.layer_distance = dict()
        self.layer_message = dict()
        self.layer_norm_distance = dict()
        self.sample_alias = dict()
        self.sample_events = dict()
        self.layer_node_weight_count = dict()
        if opt3 == True:
            self.depth = depth
        else:
            self.depth = 1000

    def distance_func(self, a, b):
        """
        The basic function to calculate the distance between two list with different length.
        """
        ep = 0.5
        m = max(a, b) + ep
        mi = min(a, b) + ep
        return ((m / mi) - 1)

    def distance_opt1_func(self, a, b):
        """
        The optimization function to calculate the distance between two list with list count.
        """
        ep = 0.5
        m = max(a[0], b[0]) + ep
        mi = min(a[0], b[0]) + ep
        return ((m / mi) - 1) * max(a[1], b[1])

    def add_degree_todict(self, node_id, degree, depth, opt1):
        """
        output the degree of each node to a dict
        """
        if node_id not in self.degree_list:
            self.degree_list[node_id] = dict()
        if depth not in self.degree_list[node_id]:
            self.degree_list[node_id][depth] = None
        if opt1:
            degree = np.array(np.unique(degree, return_counts=True)).T
        self.degree_list[node_id][depth] = degree

    def output_degree_with_depth(self, depth, opt1):
        """
        according to the BFS to get the degree of each layer
        """
        degree_dict = dict()

        for node in self.nodes:
            start_node = node
            cur_node = node
            cur_dep = 0
            flag_visit = set()
            while cur_node is not None and cur_dep < depth:
                if not isinstance(cur_node, list):
                    cur_node = [cur_node]
                filter_node = []
                for node in cur_node:
                    if node not in flag_visit:
                        flag_visit.add(node)
                        filter_node.append(node)
                cur_node = filter_node
                if len(cur_node) == 0:
                    break
                outdegree = self.graph.outdegree(cur_node)
                mask = (outdegree != 0)
                if np.any(mask):
                    outdegree = np.sort(outdegree[mask])
                else:
                    break
                # save the layer degree message to dict 
                self.add_degree_todict(start_node, outdegree[mask], cur_dep,
                                       opt1)
                succes = self.graph.successor(cur_node)
                cur_node = []
                for succ in succes:
                    if isinstance(succ, np.ndarray):
                        cur_node.extend(succ.flatten().tolist())
                    elif isinstance(succ, int):
                        cur_node.append(succ)
                cur_node = list(set(cur_node))
                cur_dep += 1

    def get_sim_neighbours(self, node, selected_num):
        """
        Select the neighours by using the degree similiarity.
        """
        degree = self.node2degree[node]
        select_count = 0
        node_nbh_list = list()
        for node_nbh in self.degree2nodes[degree]:
            if node != node_nbh:
                node_nbh_list.append(node_nbh)
                select_count += 1
                if select_count > selected_num:
                    return node_nbh_list
        degree_vec_len = len(self.degrees_sorted)
        index_degree = self.degrees_sorted.index(degree)

        index_left = -1
        index_right = -1
        degree_left = -1
        degree_right = -1

        if index_degree != -1 and index_degree >= 1:
            index_left = index_degree - 1
        if index_degree != -1 and index_degree <= degree_vec_len - 2:
            index_right = index_degree + 1
        if index_left == -1 and index_right == -1:
            return node_nbh_list
        if index_left != -1:
            degree_left = self.degrees_sorted[index_left]
        if index_right != -1:
            degree_right = self.degrees_sorted[index_right]
        select_degree = selectDegrees(degree, index_left, index_right,
                                      degree_left, degree_right)
        while True:
            for node_nbh in self.degree2nodes[select_degree]:
                if node_nbh != node:
                    node_nbh_list.append(node_nbh)
                    select_count += 1
                    if select_count > selected_num:
                        return node_nbh_list

            if select_degree == degree_left:
                if index_left >= 1:
                    index_left = index_left - 1
                else:
                    index_left = -1

            else:
                if index_right <= degree_vec_len - 2:
                    index_right += 1
                else:
                    index_right = -1

            if index_left == -1 and index_right == -1:
                return node_nbh_list

            if index_left != -1:
                degree_left = self.degrees_sorted[index_left]
            if index_right != -1:
                degree_right = self.degrees_sorted[index_right]
            select_degree = selectDegrees(degree, index_left, index_right,
                                          degree_left, degree_right)
        return node_nbh_list

    def calc_node_with_neighbor_dtw_opt2(self, src):
        """
        Use the optimization algorithm to reduce the next steps range. 
        """
        from fastdtw import fastdtw
        node_nbh_list = self.get_sim_neighbours(src, self.selected_nbh_nums)
        distance = {}
        for dist in node_nbh_list:
            calc_layer_len = min(len(self.degree_list[src]), \
                len(self.degree_list[dist]))
            distance_iteration = 0.0
            distance[src, dist] = {}
            for layer in range(0, calc_layer_len):
                src_layer = self.degree_list[src][layer]
                dist_layer = self.degree_list[dist][layer]
                weight, path = fastdtw(
                    src_layer,
                    dist_layer,
                    radius=1,
                    dist=self.distance_calc_func)
                distance_iteration += weight
                distance[src, dist][layer] = distance_iteration
        return distance

    def calc_node_with_neighbor_dtw(self, src_index):
        """
        No optimization algorithm to reduce the next steps range, just calculate distance of all path. 
        """
        from fastdtw import fastdtw
        distance = {}
        for dist_index in range(src_index + 1, self.graph.num_nodes - 1):
            src = self.nodes[src_index]
            dist = self.nodes[dist_index]
            calc_layer_len = min(len(self.degree_list[src]), \
                len(self.degree_list[dist]))
            distance_iteration = 0.0
            distance[src, dist] = {}
            for layer in range(0, calc_layer_len):
                src_layer = self.degree_list[src][layer]
                dist_layer = self.degree_list[dist][layer]
                weight, path = fastdtw(
                    src_layer,
                    dist_layer,
                    radius=1,
                    dist=self.distance_calc_func)
                distance_iteration += weight
                distance[src, dist][layer] = distance_iteration
        return distance

    def calc_distances_between_nodes(self):
        """
        Use the dtw algorithm to calculate the distance between nodes. 
        """
        from fastdtw import fastdtw
        from pathos.multiprocessing import Pool
        # decide use which algo to use 
        if self.opt1 == True:
            self.distance_calc_func = self.distance_opt1_func
        else:
            self.distance_calc_func = self.distance_func

        dtws = []
        if self.opt2:
            depth = 0
            for node in self.nodes:
                if node in self.degree_list:
                    if depth in self.degree_list[node]:
                        degree = self.degree_list[node][depth]
                        if args.opt1:
                            degree = degree[0][0]
                        else:
                            degree = degree[0]
                    if degree not in self.degree2nodes:
                        self.degree2nodes[degree] = []
                    if node not in self.node2degree:
                        self.node2degree[node] = degree
                    self.degree2nodes[degree].append(node)
            # select the log(n) node to select data 
            degree_keys = self.degree2nodes.keys()
            degree_keys = np.array(list(degree_keys), dtype='int')
            self.degrees_sorted = list(np.sort(degree_keys))
            selected_nbh_nums = 2 * math.log(self.graph.num_nodes - 1, 2)
            self.selected_nbh_nums = selected_nbh_nums

            pool = Pool(10)
            dtws = pool.map(self.calc_node_with_neighbor_dtw_opt2, self.nodes)
            pool.close()
            pool.join()
        else:
            src_indices = range(0, self.graph.num_nodes - 2)

            pool = Pool(10)
            dtws = pool.map(self.calc_node_with_neighbor_dtw, src_indices)
            pool.close()
            pool.join()
        print('calc the dtw done.')
        for dtw in dtws:
            self.distance.update(dtw)

    def normlization_layer_weight(self):
        """
        Normlation the distance between nodes, weight[1, 2, ....N] = distance[1, 2, ......N] / sum(distance)
        """
        for sd_keys, layer_weight in self.distance.items():
            src, dist = sd_keys
            layers, weights = layer_weight.keys(), layer_weight.values()
            for layer, weight in zip(layers, weights):
                if layer not in self.layer_distance:
                    self.layer_distance[layer] = {}
                if layer not in self.layer_message:
                    self.layer_message[layer] = {}
                self.layer_distance[layer][src, dist] = weight

                if src not in self.layer_message[layer]:
                    self.layer_message[layer][src] = []
                if dist not in self.layer_message[layer]:
                    self.layer_message[layer][dist] = []
                self.layer_message[layer][src].append(dist)
                self.layer_message[layer][dist].append(src)

        # normalization the layer weight  
        for i in range(0, self.depth):
            layer_weight = 0.0
            layer_count = 0
            if i not in self.layer_norm_distance:
                self.layer_norm_distance[i] = {}
            if i not in self.sample_alias:
                self.sample_alias[i] = {}
            if i not in self.sample_events:
                self.sample_events[i] = {}
            if i not in self.layer_message:
                continue
            for node in self.nodes:
                if node not in self.layer_message[i]:
                    continue
                nbhs = self.layer_message[i][node]
                weights = []
                sum_weight = 0.0
                for dist in nbhs:
                    if (node, dist) in self.layer_distance[i]:
                        weight = self.layer_distance[i][node, dist]
                    else:
                        weight = self.layer_distance[i][dist, node]
                    weight = np.exp(-float(weight))
                    weights.append(weight)
                # norm the weight 
                sum_weight = sum(weights)
                if sum_weight == 0.0:
                    sum_weight = 1.0
                weight_list = [weight / sum_weight for weight in weights]
                self.layer_norm_distance[i][node] = weight_list
                alias, events = alias_sample_build_table(np.array(weight_list))
                self.sample_alias[i][node] = alias
                self.sample_events[i][node] = events
                layer_weight += 1.0
                #layer_weight += sum(weight_list)
                layer_count += len(weights)
            layer_avg_weight = layer_weight / (1.0 * layer_count)

            self.layer_node_weight_count[i] = dict()
            for node in self.nodes:
                if node not in self.layer_norm_distance[i]:
                    continue
                weight_list = self.layer_norm_distance[i][node]
                node_cnt = 0
                for weight in weight_list:
                    if weight > layer_avg_weight:
                        node_cnt += 1
                self.layer_node_weight_count[i][node] = node_cnt

    def choose_neighbor_alias_method(self, node, layer):
        """
        Choose the neighhor with strategy of random 
        """
        weight_list = self.layer_norm_distance[layer][node]
        neighbors = self.layer_message[layer][node]
        select_idx = alias_sample(1, self.sample_alias[layer][node],
                                  self.sample_events[layer][node])
        return neighbors[select_idx[0]]

    def choose_layer_to_walk(self, node, layer):
        """
        Choose the layer to random walk
        """
        random_value = random.random()
        higher_neigbours_nums = self.layer_node_weight_count[layer][node]
        prob = math.log(higher_neigbours_nums + math.e)
        prob = prob / (1.0 + prob)
        if random_value > prob:
            if layer > 0:
                layer = layer - 1
        else:
            if layer + 1 in self.layer_message and \
                node in self.layer_message[layer + 1]:
                layer = layer + 1
        return layer

    def executor_random_walk(self, walk_process_id):
        """
        The main function to execute the structual random walk 
        """
        nodes = self.nodes
        random.shuffle(nodes)
        walk_path_all_nodes = []
        for node in nodes:
            walk_path = []
            walk_path.append(node)
            layer = 0
            while len(walk_path) < self.walk_depth:
                prop = random.random()
                if prop < 0.3:
                    node = self.choose_neighbor_alias_method(node, layer)
                    walk_path.append(node)
                else:
                    layer = self.choose_layer_to_walk(node, layer)
            walk_path_all_nodes.append(walk_path)
        return walk_path_all_nodes

    def random_walk_structual_sim(self):
        """
        According to struct distance to walk the path 
        """
        from pathos.multiprocessing import Pool
        print('start process struc2vec random walk.')
        walks_process_ids = [i for i in range(0, self.num_walks)]
        pool = Pool(10)
        walks = pool.map(self.executor_random_walk, walks_process_ids)
        pool.close()
        pool.join()

        #save the final walk result 
        file_result = open(args.tag + "_walk_path", "w")
        for walk in walks:
            for walk_node in walk:
                walk_node_str = " ".join([str(node) for node in walk_node])
                file_result.write(walk_node_str + "\n")
        file_result.close()
        print('process struc2vec random walk done.')


def learning_embedding_from_struc2vec(args):
    """
    Learning the word2vec from the random path
    """
    from gensim.models import Word2Vec
    from gensim.models.word2vec import LineSentence
    struc_walks = LineSentence(args.tag + "_walk_path")
    model = Word2Vec(struc_walks, size=args.w2v_emb_size, window=args.w2v_window_size, iter=args.w2v_epoch, \
        min_count=0, hs=1, sg=1, workers=5)
    model.wv.save_word2vec_format(args.emb_file)


def main(args):
    """
    The main fucntion to run the algorithm struc2vec
    """
    if args.train:
        dataset = EdgeDataset(
            undirected=args.undirected, data_dir=args.edge_file)
        graph = StrucVecGraph(dataset.graph, dataset.nodes, args.opt1, args.opt2, args.opt3, args.depth,\
            args.num_walks, args.walk_depth)
        graph.output_degree_with_depth(args.depth, args.opt1)
        graph.calc_distances_between_nodes()
        graph.normlization_layer_weight()
        graph.random_walk_structual_sim()
        learning_embedding_from_struc2vec(args)
        file_label = open(args.label_file)
        file_label_reindex = open(args.label_file + "_reindex", "w")
        for line in file_label:
            items = line.strip("\n\r").split(" ")
            try:
                items = [int(item) for item in items]
            except:
                continue
            if items[0] not in dataset.node_dict:
                continue
            reindex = dataset.node_dict[items[0]]
            file_label_reindex.write(str(reindex) + " " + str(items[1]) + "\n")
        file_label_reindex.close()

    if args.valid:
        emb_file = open(args.emb_file)
        file_label_reindex = open(args.label_file + "_reindex")
        label_dict = dict()
        for line in file_label_reindex:
            items = line.strip("\n\r").split(" ")
            try:
                label_dict[int(items[0])] = int(items[1])
            except:
                continue

        data_for_train_valid = []
        for line in emb_file:
            items = line.strip("\n\r").split(" ")
            if len(items) <= 2:
                continue
            index = int(items[0])
            label = int(label_dict[index])
            sample = []
            sample.append(index)
            feature_emb = items[1:]
            feature_emb = [float(feature) for feature in feature_emb]
            sample.extend(feature_emb)
            sample.append(label)
            data_for_train_valid.append(sample)
        train_lr_l2_model(args, data_for_train_valid)


if __name__ == "__main__":
    parser = argparse.ArgumentParser(description='struc2vec')
    parser.add_argument("--edge_file", type=str, default="")
    parser.add_argument("--label_file", type=str, default="")
    parser.add_argument("--emb_file", type=str, default="w2v_emb")
    parser.add_argument("--undirected", type=bool, default=True)
    parser.add_argument("--depth", type=int, default=8)
    parser.add_argument("--num_walks", type=int, default=10)
    parser.add_argument("--walk_depth", type=int, default=80)
    parser.add_argument("--opt1", type=bool, default=False)
    parser.add_argument("--opt2", type=bool, default=False)
    parser.add_argument("--opt3", type=bool, default=False)
    parser.add_argument("--w2v_emb_size", type=int, default=128)
    parser.add_argument("--w2v_window_size", type=int, default=10)
    parser.add_argument("--w2v_epoch", type=int, default=5)
    parser.add_argument("--train", type=bool, default=False)
    parser.add_argument("--valid", type=bool, default=False)
    parser.add_argument("--lr", type=float, default=0.0001)
    parser.add_argument("--num_class", type=int, default=4)
    parser.add_argument("--epoch", type=int, default=2000)
    parser.add_argument("--tag", type=str, default="")

    args = parser.parse_args()
    main(args)