train.py 5.7 KB
Newer Older
Y
yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
#-*- coding: utf-8 -*-
import pgl
from pgl import data_loader
from pgl.utils.logger import log
import paddle.fluid as fluid
import numpy as np
import time
import argparse


def load(name):
    if name == 'cora':
        dataset = data_loader.CoraDataset()
    elif name == "pubmed":
        dataset = data_loader.CitationDataset("pubmed", symmetry_edges=False)
    elif name == "citeseer":
        dataset = data_loader.CitationDataset("citeseer", symmetry_edges=False)
    else:
        raise ValueError(name + " dataset doesn't exists")
    return dataset


def main(args):
    dataset = load(args.dataset)
    place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
    train_program = fluid.Program()
    startup_program = fluid.Program()
    test_program = fluid.Program()
    hidden_size = 8

    with fluid.program_guard(train_program, startup_program):
        gw = pgl.graph_wrapper.GraphWrapper(
            name="graph",
            place=place,
            node_feat=dataset.graph.node_feat_info())

        output = pgl.layers.gat(gw,
                                gw.node_feat["words"],
                                hidden_size,
                                activation="elu",
                                name="gat_layer_1",
                                num_heads=8,
                                feat_drop=0.6,
                                attn_drop=0.6,
                                is_test=False)
        output = pgl.layers.gat(gw,
                                output,
                                dataset.num_classes,
                                num_heads=1,
                                activation=None,
                                name="gat_layer_2",
                                feat_drop=0.6,
                                attn_drop=0.6,
                                is_test=False)
        node_index = fluid.layers.data(
            "node_index",
            shape=[None, 1],
Y
Yelrose 已提交
71
            dtype="int64",
Y
yelrose 已提交
72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113
            append_batch_size=False)
        node_label = fluid.layers.data(
            "node_label",
            shape=[None, 1],
            dtype="int64",
            append_batch_size=False)

        pred = fluid.layers.gather(output, node_index)
        loss, pred = fluid.layers.softmax_with_cross_entropy(
            logits=pred, label=node_label, return_softmax=True)
        acc = fluid.layers.accuracy(input=pred, label=node_label, k=1)
        loss = fluid.layers.mean(loss)

    test_program = train_program.clone(for_test=True)
    with fluid.program_guard(train_program, startup_program):
        adam = fluid.optimizer.Adam(
            learning_rate=0.005,
            regularization=fluid.regularizer.L2DecayRegularizer(
                regularization_coeff=0.0005))
        adam.minimize(loss)

    exe = fluid.Executor(place)
    exe.run(startup_program)

    feed_dict = gw.to_feed(dataset.graph)

    train_index = dataset.train_index
    train_label = np.expand_dims(dataset.y[train_index], -1)
    train_index = np.expand_dims(train_index, -1)

    val_index = dataset.val_index
    val_label = np.expand_dims(dataset.y[val_index], -1)
    val_index = np.expand_dims(val_index, -1)

    test_index = dataset.test_index
    test_label = np.expand_dims(dataset.y[test_index], -1)
    test_index = np.expand_dims(test_index, -1)

    dur = []
    for epoch in range(200):
        if epoch >= 3:
            t0 = time.time()
Y
Yelrose 已提交
114
        feed_dict["node_index"] = np.array(train_index, dtype="int64")
Y
yelrose 已提交
115 116 117 118 119 120 121 122 123
        feed_dict["node_label"] = np.array(train_label, dtype="int64")
        train_loss, train_acc = exe.run(train_program,
                                        feed=feed_dict,
                                        fetch_list=[loss, acc],
                                        return_numpy=True)
        if epoch >= 3:
            time_per_epoch = 1.0 * (time.time() - t0)
            dur.append(time_per_epoch)

Y
Yelrose 已提交
124
        feed_dict["node_index"] = np.array(val_index, dtype="int64")
Y
yelrose 已提交
125 126 127 128 129 130 131 132 133 134
        feed_dict["node_label"] = np.array(val_label, dtype="int64")
        val_loss, val_acc = exe.run(test_program,
                                    feed=feed_dict,
                                    fetch_list=[loss, acc],
                                    return_numpy=True)

        log.info("Epoch %d " % epoch + "(%.5lf sec) " % np.mean(dur) +
                 "Train Loss: %f " % train_loss + "Train Acc: %f " % train_acc
                 + "Val Loss: %f " % val_loss + "Val Acc: %f " % val_acc)

Y
Yelrose 已提交
135
    feed_dict["node_index"] = np.array(test_index, dtype="int64")
Y
yelrose 已提交
136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151
    feed_dict["node_label"] = np.array(test_label, dtype="int64")
    test_loss, test_acc = exe.run(test_program,
                                  feed=feed_dict,
                                  fetch_list=[loss, acc],
                                  return_numpy=True)
    log.info("Accuracy: %f" % test_acc)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='GAT')
    parser.add_argument(
        "--dataset", type=str, default="cora", help="dataset (cora, pubmed)")
    parser.add_argument("--use_cuda", action='store_true', help="use_cuda")
    args = parser.parse_args()
    log.info(args)
    main(args)