model.py 5.8 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
    Deepwalk model file.
"""
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals
import math

import paddle.fluid.layers as L
import paddle.fluid as F


def split_embedding(input,
                    dict_size,
                    hidden_size,
                    initializer,
                    name,
                    num_part=16,
                    is_sparse=False,
                    learning_rate=1.0):
    """ split_embedding
    """
    _part_size = hidden_size // num_part
    if hidden_size % num_part != 0:
        _part_size += 1
    output_embedding = []
    p_num = 0
    while hidden_size > 0:
        _part_size = min(_part_size, hidden_size)
        hidden_size -= _part_size
        print("part", p_num, "size=", (dict_size, _part_size))
        part_embedding = L.embedding(
            input=input,
            size=(dict_size, _part_size),
            is_sparse=is_sparse,
            is_distributed=False,
            param_attr=F.ParamAttr(
                name=name + '_part%s' % p_num,
                initializer=initializer,
                learning_rate=learning_rate))
        p_num += 1
        output_embedding.append(part_embedding)
    return L.concat(output_embedding, -1)


class DeepwalkModel(object):
    def __init__(self,
                 num_nodes,
                 hidden_size=16,
                 neg_num=5,
                 is_sparse=False,
                 is_distributed=False,
                 embedding_lr=1.0):
        self.pyreader = L.py_reader(
            capacity=70,
            shapes=[[-1, 1, 1], [-1, neg_num + 1, 1]],
            dtypes=['int64', 'int64'],
            lod_levels=[0, 0],
            name='train',
            use_double_buffer=True)

        self.num_nodes = num_nodes
        self.neg_num = neg_num

        self.embed_init = F.initializer.Uniform(
            low=-1. / math.sqrt(hidden_size), high=1. / math.sqrt(hidden_size))
        self.is_sparse = is_sparse
        self.is_distributed = is_distributed
        self.hidden_size = hidden_size
        self.loss = None
        self.embedding_lr = embedding_lr
        max_hidden_size = int(math.pow(2, 31) / 4 / num_nodes)
        self.num_part = int(math.ceil(1. * hidden_size / max_hidden_size))

    def forward(self):
        src, dsts = L.read_file(self.pyreader)

        if self.is_sparse:
            # sparse mode use 2 dims input.
            src = L.reshape(src, [-1, 1])
            dsts = L.reshape(dsts, [-1, 1])

        if self.num_part is not None and self.num_part != 1 and not self.is_distributed:
            src_embed = split_embedding(
                src,
                self.num_nodes,
                self.hidden_size,
                self.embed_init,
                "weight",
                self.num_part,
                self.is_sparse,
                learning_rate=self.embedding_lr)

            dsts_embed = split_embedding(
                dsts,
                self.num_nodes,
                self.hidden_size,
                self.embed_init,
                "weight",
                self.num_part,
                self.is_sparse,
                learning_rate=self.embedding_lr)
        else:
            src_embed = L.embedding(
                src, (self.num_nodes, self.hidden_size),
                self.is_sparse,
                self.is_distributed,
                param_attr=F.ParamAttr(
                    name="weight",
                    learning_rate=self.embedding_lr,
                    initializer=self.embed_init))

            dsts_embed = L.embedding(
                dsts, (self.num_nodes, self.hidden_size),
                self.is_sparse,
                self.is_distributed,
                param_attr=F.ParamAttr(
                    name="weight",
                    learning_rate=self.embedding_lr,
                    initializer=self.embed_init))

        if self.is_sparse:
            # reshape back
            src_embed = L.reshape(src_embed, [-1, 1, self.hidden_size])
            dsts_embed = L.reshape(dsts_embed,
                                   [-1, self.neg_num + 1, self.hidden_size])

        logits = L.matmul(
            src_embed, dsts_embed,
            transpose_y=True)  # [batch_size, 1, neg_num+1]

        pos_label = L.fill_constant_batch_size_like(logits, [-1, 1, 1],
                                                    "float32", 1)
        neg_label = L.fill_constant_batch_size_like(
            logits, [-1, 1, self.neg_num], "float32", 0)
        label = L.concat([pos_label, neg_label], -1)

        pos_weight = L.fill_constant_batch_size_like(logits, [-1, 1, 1],
                                                     "float32", self.neg_num)
        neg_weight = L.fill_constant_batch_size_like(
            logits, [-1, 1, self.neg_num], "float32", 1)
        weight = L.concat([pos_weight, neg_weight], -1)

        weight.stop_gradient = True
        label.stop_gradient = True

        loss = L.sigmoid_cross_entropy_with_logits(logits, label)
        loss = loss * weight
        loss = L.reduce_mean(loss)
        loss = loss * ((self.neg_num + 1) / 2 / self.neg_num)
        loss.persistable = True
        self.loss = loss
        return loss