dgi.py 5.7 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
    DGI Pretrain
"""
import os
import pgl
from pgl import data_loader
from pgl.utils.logger import log
import paddle.fluid as fluid
import numpy as np
import time
import argparse


def load(name):
    """Load dataset"""
    if name == 'cora':
        dataset = data_loader.CoraDataset()
    elif name == "pubmed":
        dataset = data_loader.CitationDataset("pubmed", symmetry_edges=False)
    elif name == "citeseer":
        dataset = data_loader.CitationDataset("citeseer", symmetry_edges=False)
    else:
        raise ValueError(name + " dataset doesn't exists")
    return dataset


def save_param(dirname, var_name_list):
    """save_param"""
    for var_name in var_name_list:
        var = fluid.global_scope().find_var(var_name)
        var_tensor = var.get_tensor()
        np.save(os.path.join(dirname, var_name + '.npy'), np.array(var_tensor))


def main(args):
    """main"""
    dataset = load(args.dataset)

    # normalize
    indegree = dataset.graph.indegree()
    norm = np.zeros_like(indegree, dtype="float32")
    norm[indegree > 0] = np.power(indegree[indegree > 0], -0.5)
    dataset.graph.node_feat["norm"] = np.expand_dims(norm, -1)

    place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
    train_program = fluid.Program()
    startup_program = fluid.Program()
    hidden_size = 512

    with fluid.program_guard(train_program, startup_program):
        pos_gw = pgl.graph_wrapper.GraphWrapper(
            name="pos_graph",
            place=place,
            node_feat=dataset.graph.node_feat_info())

        neg_gw = pgl.graph_wrapper.GraphWrapper(
            name="neg_graph",
            place=place,
            node_feat=dataset.graph.node_feat_info())

        positive_feat = pgl.layers.gcn(pos_gw,
                                       pos_gw.node_feat["words"],
                                       hidden_size,
                                       activation="relu",
                                       norm=pos_gw.node_feat['norm'],
                                       name="gcn_layer_1")

        negative_feat = pgl.layers.gcn(neg_gw,
                                       neg_gw.node_feat["words"],
                                       hidden_size,
                                       activation="relu",
                                       norm=neg_gw.node_feat['norm'],
                                       name="gcn_layer_1")

        summary_feat = fluid.layers.sigmoid(
            fluid.layers.reduce_mean(
                positive_feat, [0], keep_dim=True))

        summary_feat = fluid.layers.fc(summary_feat,
                                       hidden_size,
                                       bias_attr=False,
                                       name="discriminator")
        pos_logits = fluid.layers.matmul(
            positive_feat, summary_feat, transpose_y=True)
        neg_logits = fluid.layers.matmul(
            negative_feat, summary_feat, transpose_y=True)
        pos_loss = fluid.layers.sigmoid_cross_entropy_with_logits(
            x=pos_logits,
            label=fluid.layers.ones(
                shape=[dataset.graph.num_nodes, 1], dtype="float32"))
        neg_loss = fluid.layers.sigmoid_cross_entropy_with_logits(
            x=neg_logits,
            label=fluid.layers.zeros(
                shape=[dataset.graph.num_nodes, 1], dtype="float32"))
        loss = fluid.layers.reduce_mean(pos_loss) + fluid.layers.reduce_mean(
            neg_loss)

        adam = fluid.optimizer.Adam(learning_rate=1e-3)
        adam.minimize(loss)

    exe = fluid.Executor(place)
    exe.run(startup_program)

    best_loss = 1e9
    dur = []

    for epoch in range(args.epoch):
        feed_dict = pos_gw.to_feed(dataset.graph)
        node_feat = dataset.graph.node_feat["words"].copy()
        perm = np.arange(0, dataset.graph.num_nodes)
        np.random.shuffle(perm)

        dataset.graph.node_feat["words"] = dataset.graph.node_feat["words"][
            perm]

        feed_dict.update(neg_gw.to_feed(dataset.graph))
        dataset.graph.node_feat["words"] = node_feat
        if epoch >= 3:
            t0 = time.time()
        train_loss = exe.run(train_program,
                             feed=feed_dict,
                             fetch_list=[loss],
                             return_numpy=True)
        if train_loss[0] < best_loss:
            best_loss = train_loss[0]
            save_param(args.checkpoint, ["gcn_layer_1", "gcn_layer_1_bias"])

        if epoch >= 3:
            time_per_epoch = 1.0 * (time.time() - t0)
            dur.append(time_per_epoch)

        log.info("Epoch %d " % epoch + "(%.5lf sec) " % np.mean(dur) +
                 "Train Loss: %f " % train_loss[0])


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='DGI pretrain')
    parser.add_argument(
        "--dataset", type=str, default="cora", help="dataset (cora, pubmed)")
    parser.add_argument(
        "--checkpoint", type=str, default="best_model", help="checkpoint")
    parser.add_argument(
        "--epoch", type=int, default=200, help="pretrain epochs")
    parser.add_argument("--use_cuda", action='store_true', help="use_cuda")
    args = parser.parse_args()
    log.info(args)
    main(args)