utils.py 3.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
Utils for the models.
"""
import paddle.fluid as fluid
from paddle.fluid.layer_helper import LayerHelper


def lookup_table(input, embedding_table, dtype='float32'):
    """
    lookup table support for paddle.
    :param input:
    :param embedding_table:
    :param dtype:
    :return:
    """
    is_sparse = False
    is_distributed = False
    helper = LayerHelper('embedding', **locals())
    remote_prefetch = is_sparse and (not is_distributed)
    if remote_prefetch:
        assert is_sparse is True and is_distributed is False
    tmp = helper.create_variable_for_type_inference(dtype)
    padding_idx = -1
    helper.append_op(
        type='lookup_table',
        inputs={'Ids': input,
                'W': embedding_table},
        outputs={'Out': tmp},
        attrs={
            'is_sparse': is_sparse,
            'is_distributed': is_distributed,
            'remote_prefetch': remote_prefetch,
            'padding_idx': padding_idx
        })
    return tmp


def lookup_table_gather(index, input):
    """
    lookup table support for paddle by gather.
    :param index:
    :param input:
    :return:
    """
    return fluid.layers.gather(index=index, input=input, overwrite=False)
Z
ZHUI 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119


def _clone_var_in_block_(block, var):
    assert isinstance(var, fluid.Variable)
    if var.desc.type() == fluid.core.VarDesc.VarType.LOD_TENSOR:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            lod_level=var.lod_level,
            persistable=True)
    else:
        return block.create_var(
            name=var.name,
            shape=var.shape,
            dtype=var.dtype,
            type=var.type,
            persistable=True)


def load_var(executor, main_program=None, var=None, filename=None):
    """
    load_var to certain program
    :param executor: executor
    :param main_program: the program to load
    :param var: the variable name in main_program.
    :file_name: the file name of the file to load.
    :return: None
    """
    load_prog = fluid.Program()
    load_block = load_prog.global_block()

    if main_program is None:
        main_program = fluid.default_main_program()

    if not isinstance(main_program, fluid.Program):
        raise TypeError("program should be as Program type or None")

    vars = list(filter(None, main_program.list_vars()))
    # save origin param shape
    orig_para_shape = {}
    load_var_map = {}
    for each_var in vars:
        if each_var.name != var:
            continue
        assert isinstance(each_var, fluid.Variable)
        if each_var.type == fluid.core.VarDesc.VarType.RAW:
            continue

        if isinstance(each_var, fluid.framework.Parameter):
            orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape())
        new_var = _clone_var_in_block_(load_block, each_var)
        if filename is not None:
            load_block.append_op(
                type='load',
                inputs={},
                outputs={'Out': [new_var]},
                attrs={'file_path': filename})

    executor.run(load_prog)