test_dataloader.py 4.0 KB
Newer Older
W
Webbley 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""test_dataloader"""

import time
import unittest
import json
import os

from pgl.utils.data.dataset import Dataset, StreamDataset
from pgl.utils.data.dataloader import Dataloader

DATA_SIZE = 20


class ListDataset(Dataset):
    def __init__(self):
        self.dataset = list(range(0, DATA_SIZE))

    def __getitem__(self, idx):
        return self._transform(self.dataset[idx])

    def __len__(self):
        return len(self.dataset)

    def _transform(self, example):
W
Webbley 已提交
38
        time.sleep(0.1)
W
Webbley 已提交
39 40 41 42 43 44
        return example


class IterDataset(StreamDataset):
    def __init__(self):
        self.dataset = list(range(0, DATA_SIZE))
W
Webbley 已提交
45
        self.count = 0
W
Webbley 已提交
46 47 48

    def __iter__(self):
        for data in self.dataset:
W
Webbley 已提交
49 50 51 52
            self.count += 1
            if self.count % self._worker_info.num_workers != self._worker_info.fid:
                continue
            time.sleep(0.1)
W
Webbley 已提交
53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97
            yield data


class Collate_fn(object):
    def __init__(self, config):
        self.config = config

    def __call__(self, batch_examples):
        feed_dict = {}
        feed_dict['data'] = batch_examples
        feed_dict['labels'] = [i for i in range(len(batch_examples))]
        return feed_dict


class DataloaderTest(unittest.TestCase):
    def test_ListDataset(self):
        config = {
            'batch_size': 3,
            'drop_last': True,
            'shuffle': True,
            'num_workers': 2,
        }
        collate_fn = Collate_fn(config)
        ds = ListDataset()

        # test batch_size
        loader = Dataloader(
            ds,
            batch_size=config['batch_size'],
            drop_last=config['drop_last'],
            num_workers=config['num_workers'],
            collate_fn=collate_fn)

        epochs = 1
        for e in range(epochs):
            res = []
            for batch_data in loader:
                res.extend(batch_data['data'])
                self.assertEqual(len(batch_data['data']), config['batch_size'])

        # test shuffle
        loader = Dataloader(
            ds,
            batch_size=3,
            drop_last=False,
W
Webbley 已提交
98
            shuffle=True,
W
Webbley 已提交
99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
            num_workers=1,
            collate_fn=collate_fn)

        for e in range(epochs):
            res = []
            for batch_data in loader:
                res.extend(batch_data['data'])
            self.assertEqual(set([i for i in range(DATA_SIZE)]), set(res))

    def test_IterDataset(self):
        config = {
            'batch_size': 3,
            'drop_last': True,
            'num_workers': 2,
        }
        collate_fn = Collate_fn(config)
        ds = IterDataset()
        loader = Dataloader(
            ds,
            batch_size=config['batch_size'],
            drop_last=config['drop_last'],
            num_workers=config['num_workers'],
            collate_fn=collate_fn)

        epochs = 1
        for e in range(epochs):
            res = []
            for batch_data in loader:
                res.extend(batch_data['data'])
                self.assertEqual(len(batch_data['data']), config['batch_size'])

        # test shuffle
        loader = Dataloader(
            ds,
            batch_size=3,
            drop_last=False,
            num_workers=1,
            collate_fn=collate_fn)

        for e in range(epochs):
            res = []
            for batch_data in loader:
                res.extend(batch_data['data'])
            self.assertEqual(set([i for i in range(DATA_SIZE)]), set(res))


if __name__ == "__main__":
    unittest.main()