tester.py 4.9 KB
Newer Older
L
liweibin 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file implement the testing process of STGCN model.
"""
import os
import sys
import time
import argparse
import numpy as np
import pandas as pd

import paddle.fluid as fluid
import paddle.fluid.layers as fl
import pgl
from pgl.utils.logger import log

from data_loader.data_utils import gen_batch
from utils.math_utils import evaluation


def multi_pred(exe, gw, gf, program, y_pred, seq, batch_size, \
        n_his, n_pred, step_idx, dynamic_batch=True):
    """multi step prediction"""
    pred_list = []
    for i in gen_batch(
            seq, min(batch_size, len(seq)), dynamic_batch=dynamic_batch):

        # Note: use np.copy() to avoid the modification of source data.
        test_seq = np.copy(i[:, 0:n_his + 1, :, :]).astype(np.float32)
        graph = gf.build_graph(i[:, 0:n_his, :, :])
        feed = gw.to_feed(graph)
        step_list = []
        for j in range(n_pred):
            feed['input'] = test_seq
            pred = exe.run(program, feed=feed, fetch_list=[y_pred])
            if isinstance(pred, list):
                pred = np.array(pred[0])
            test_seq[:, 0:n_his - 1, :, :] = test_seq[:, 1:n_his, :, :]
            test_seq[:, n_his - 1, :, :] = pred
            step_list.append(pred)
        pred_list.append(step_list)
    #  pred_array -> [n_pred, len(seq), n_route, C_0)
    pred_array = np.concatenate(pred_list, axis=1)
    return pred_array, pred_array.shape[1]


def model_inference(exe, gw, gf, program, pred, inputs, args, step_idx,
                    min_va_val, min_val):
    """inference model"""
    x_val, x_test, x_stats = inputs.get_data('val'), inputs.get_data(
        'test'), inputs.get_stats()

    if args.n_his + args.n_pred > x_val.shape[1]:
        raise ValueError(
            f'ERROR: the value of n_pred "{args.n_pred}" exceeds the length limit.'
        )

    # y_val shape: [n_pred, len(x_val), n_route, C_0)
    y_val, len_val = multi_pred(exe, gw, gf, program, pred, \
            x_val, args.batch_size, args.n_his, args.n_pred, step_idx)

    evl_val = evaluation(x_val[0:len_val, step_idx + args.n_his, :, :],
                         y_val[step_idx], x_stats)

    # chks: indicator that reflects the relationship of values between evl_val and min_va_val.
    chks = evl_val < min_va_val
    # update the metric on test set, if model's performance got improved on the validation.
    if sum(chks):
        min_va_val[chks] = evl_val[chks]
        y_pred, len_pred = multi_pred(exe, gw, gf, program, pred, \
                x_test, args.batch_size, args.n_his, args.n_pred, step_idx)

        evl_pred = evaluation(x_test[0:len_pred, step_idx + args.n_his, :, :],
                              y_pred[step_idx], x_stats)
        min_val = evl_pred

    return min_va_val, min_val


def model_test(exe, gw, gf, program, pred, inputs, args):
    """test model"""
    if args.inf_mode == 'sep':
        # for inference mode 'sep', the type of step index is int.
        step_idx = args.n_pred - 1
        tmp_idx = [step_idx]
    elif args.inf_mode == 'merge':
        # for inference mode 'merge', the type of step index is np.ndarray.
        step_idx = tmp_idx = np.arange(3, args.n_pred + 1, 3) - 1
        print(step_idx)
    else:
        raise ValueError(f'ERROR: test mode "{args.inf_mode}" is not defined.')

    x_test, x_stats = inputs.get_data('test'), inputs.get_stats()
    y_test, len_test = multi_pred(exe, gw, gf, program, pred, \
            x_test, args.batch_size, args.n_his, args.n_pred, step_idx)

    # save result
    gt = x_test[0:len_test, args.n_his:, :, :].reshape(-1, args.n_route)
    y_pred = y_test.reshape(-1, args.n_route)
    city_df = pd.read_csv(args.city_file)
    city_df = city_df.drop(0)

    np.savetxt(
        os.path.join(args.output_path, "groundtruth.csv"),
        gt.astype(np.int32),
        fmt='%d',
        delimiter=',',
        header=",".join(city_df['city']))
    np.savetxt(
        os.path.join(args.output_path, "prediction.csv"),
        y_pred.astype(np.int32),
        fmt='%d',
        delimiter=",",
        header=",".join(city_df['city']))

    for i in range(step_idx + 1):
        evl = evaluation(x_test[0:len_test, step_idx + args.n_his, :, :],
                         y_test[i], x_stats)
        for ix in tmp_idx:
            te = evl[ix - 2:ix + 1]
            print(
                f'Time Step {i + 1}: MAPE {te[0]:7.3%}; MAE  {te[1]:4.3f}; RMSE {te[2]:6.3f}.'
            )