cluster_train.py 6.6 KB
Newer Older
W
Webbley 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import argparse
import time
import os
import math
import numpy as np

import paddle.fluid as F
import paddle.fluid.layers as L
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet
from paddle.fluid.transpiler.distribute_transpiler import DistributeTranspilerConfig
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from pgl.utils.logger import log

from model import Metapath2vecModel
from graph import m2vGraph
from utils import load_config
from walker import multiprocess_data_generator


def init_role():
    # reset the place according to role of parameter server
    training_role = os.getenv("TRAINING_ROLE", "TRAINER")
    paddle_role = role_maker.Role.WORKER
    place = F.CPUPlace()
    if training_role == "PSERVER":
        paddle_role = role_maker.Role.SERVER

    # set the fleet runtime environment according to configure
    ports = os.getenv("PADDLE_PORT", "6174").split(",")
    pserver_ips = os.getenv("PADDLE_PSERVERS").split(",")  # ip,ip...
    eplist = []
    if len(ports) > 1:
        # local debug mode, multi port
        for port in ports:
            eplist.append(':'.join([pserver_ips[0], port]))
    else:
        # distributed mode, multi ip
        for ip in pserver_ips:
            eplist.append(':'.join([ip, ports[0]]))

    pserver_endpoints = eplist  # ip:port,ip:port...
    worker_num = int(os.getenv("PADDLE_TRAINERS_NUM", "0"))
    trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
    role = role_maker.UserDefinedRoleMaker(
        current_id=trainer_id,
        role=paddle_role,
        worker_num=worker_num,
        server_endpoints=pserver_endpoints)
    fleet.init(role)


def optimization(base_lr, loss, train_steps, optimizer='sgd'):
    decayed_lr = L.learning_rate_scheduler.polynomial_decay(
        learning_rate=base_lr,
        decay_steps=train_steps,
        end_learning_rate=0.0001 * base_lr,
        power=1.0,
        cycle=False)
    if optimizer == 'sgd':
        optimizer = F.optimizer.SGD(decayed_lr)
    elif optimizer == 'adam':
        optimizer = F.optimizer.Adam(decayed_lr, lazy_mode=True)
    else:
        raise ValueError

    log.info('learning rate:%f' % (base_lr))
    #create the DistributeTranspiler configure
    config = DistributeTranspilerConfig()
    config.sync_mode = False
    #config.runtime_split_send_recv = False

    config.slice_var_up = False
    #create the distributed optimizer
    optimizer = fleet.distributed_optimizer(optimizer, config)
    optimizer.minimize(loss)


def build_complied_prog(train_program, model_loss):
    num_threads = int(os.getenv("CPU_NUM", 10))
    trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0))
    exec_strategy = F.ExecutionStrategy()
    exec_strategy.num_threads = num_threads
    #exec_strategy.use_experimental_executor = True
    build_strategy = F.BuildStrategy()
    build_strategy.enable_inplace = True
    #build_strategy.memory_optimize = True
    build_strategy.memory_optimize = False
    build_strategy.remove_unnecessary_lock = False
    if num_threads > 1:
        build_strategy.reduce_strategy = F.BuildStrategy.ReduceStrategy.Reduce

    compiled_prog = F.compiler.CompiledProgram(
        train_program).with_data_parallel(loss_name=model_loss.name)
    return compiled_prog


def train_prog(exe, program, loss, node2vec_pyreader, args, train_steps):
    trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
    step = 0
    if not os.path.exists(args.save_path):
        os.makedirs(args.save_path)
    while True:
        try:
            begin_time = time.time()
            loss_val, = exe.run(program, fetch_list=[loss])
            log.info("step %s: loss %.5f speed: %.5f s/step" %
                     (step, np.mean(loss_val), time.time() - begin_time))
            step += 1
        except F.core.EOFException:
            node2vec_pyreader.reset()

        if step % args.steps_per_save == 0 or step == train_steps:
            save_path = args.save_path
            if trainer_id == 0:
                model_path = os.path.join(save_path, "%s" % step)
                fleet.save_persistables(exe, model_path)

        if step == train_steps:
            break


def main(args):
    log.info("start")

    worker_num = int(os.getenv("PADDLE_TRAINERS_NUM", "0"))
    num_devices = int(os.getenv("CPU_NUM", 10))

    model = Metapath2vecModel(config=args)
    pyreader = model.pyreader
    loss = model.forward()

    # init fleet
    init_role()

    train_steps = math.ceil(args.num_nodes * args.epochs / args.batch_size /
                            num_devices / worker_num)
    log.info("Train step: %s" % train_steps)

    real_batch_size = args.batch_size * args.walk_len * args.win_size
    if args.optimizer == "sgd":
        args.lr *= real_batch_size
    optimization(args.lr, loss, train_steps, args.optimizer)

    # init and run server or worker
    if fleet.is_server():
        fleet.init_server(args.warm_start_from_dir)
        fleet.run_server()

    if fleet.is_worker():
        log.info("start init worker done")
        fleet.init_worker()
        #just the worker, load the sample
        log.info("init worker done")

        exe = F.Executor(F.CPUPlace())
        exe.run(fleet.startup_program)
        log.info("Startup done")

        dataset = m2vGraph(args)
        log.info("Build graph done.")

        data_generator = multiprocess_data_generator(args, dataset)

        cur_time = time.time()
        for idx, _ in enumerate(data_generator()):
            log.info("iter %s: %s s" % (idx, time.time() - cur_time))
            cur_time = time.time()
            if idx == 100:
                break

        pyreader.decorate_tensor_provider(data_generator)
        pyreader.start()

        compiled_prog = build_complied_prog(fleet.main_program, loss)
        train_prog(exe, compiled_prog, loss, pyreader, args, train_steps)


if __name__ == '__main__':
    parser = argparse.ArgumentParser(description='metapath2vec')
    parser.add_argument("-c", "--config", type=str, default="./config.yaml")
    args = parser.parse_args()
    config = load_config(args.config)
    log.info(config)
    main(config)