提交 96c58265 编写于 作者: B Bo Zhou 提交者: Hongsheng Zeng

Documents cn (#85)

* Update README.cn.md

* Update README.md

* Update README.md

* Update README.cn.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md

* Update README.md
上级 079d7407
......@@ -103,7 +103,7 @@ ans = agent.sum(1,5) # run remotely and not comsume any local computation resour
# 安装:
### 依赖
- Python 2.7 or 3.5+.
- PaddlePaddle >=1.2.1 (**非必须的**,如果你只用并行部分的接口不需要安装paddle)
- [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) >=1.2.1 (**非必须的**,如果你只用并行部分的接口不需要安装paddle)
```
......@@ -118,7 +118,7 @@ pip install parl
- [IMPALA](examples/IMPALA/)
- [A2C](examples/A2C/)
- [GA3C](examples/GA3C/)
- [NIPS2018强化学习假肢挑战赛冠军解决方案](examples/NeurIPS2018-AI-for-Prosthetics-Challenge/)
- [冠军解决方案:NIPS2018强化学习假肢挑战赛](examples/NeurIPS2018-AI-for-Prosthetics-Challenge/)
<img src=".github/NeurlIPS2018.gif" width = "300" height ="200" alt="NeurlIPS2018"/> <img src=".github/Half-Cheetah.gif" width = "300" height ="200" alt="Half-Cheetah"/> <img src=".github/Breakout.gif" width = "200" height ="200" alt="Breakout"/>
<br>
......
......@@ -4,7 +4,7 @@
English | [简体中文](./README.cn.md)
> PARL is a flexible and high-efficient reinforcement learning framework based on [PaddlePaddle](https://github.com/PaddlePaddle/Paddle).
> PARL is a flexible and high-efficient reinforcement learning framework.
# Features
**Reproducible**. We provide algorithms that stably reproduce the result of many influential reinforcement learning algorithms.
......@@ -28,7 +28,7 @@ The main abstractions introduced by PARL that are used to build an agent recursi
`Algorithm` describes the mechanism to update parameters in `Model` and often contains at least one model.
### Agent
`Agent`, a data bridge between environment and algorithm, is responsible for data I/O with the outside environment and describes data preprocessing before feeding data into the training process.
`Agent`, a data bridge between the environment and the algorithm, is responsible for data I/O with the outside environment and describes data preprocessing before feeding data into the training process.
Here is an example of building an agent with DQN algorithm for Atari games.
```python
......@@ -106,7 +106,7 @@ For users, they can write code in a simple way, just like writing multi-thread c
# Install:
### Dependencies
- Python 2.7 or 3.5+.
- PaddlePaddle >=1.2.1 (**Optional**, if you only want to use APIs related to parallelization alone)
- [PaddlePaddle](https://github.com/PaddlePaddle/Paddle) >=1.2.1 (**Optional**, if you only want to use APIs related to parallelization alone)
```
......
......@@ -20,7 +20,7 @@ Mean episode reward in training process after 10 million sample steps.
+ [paddlepaddle>=1.3.0](https://github.com/PaddlePaddle/Paddle)
+ [parl](https://github.com/PaddlePaddle/PARL)
+ gym
+ atari_py
+ atari-py
### Distributed Training
......
......@@ -20,7 +20,7 @@ Please see [here](https://gym.openai.com/envs/#atari) to know more about Atari g
+ [parl](https://github.com/PaddlePaddle/PARL)
+ gym
+ tqdm
+ atari_py
+ atari-py
+ [ale_python_interface](https://github.com/mgbellemare/Arcade-Learning-Environment)
......
......@@ -20,7 +20,7 @@ Results with one learner (in a P40 GPU) and 24 simulators (in 12 CPU) in 10 mill
+ [paddlepaddle>=1.3.0](https://github.com/PaddlePaddle/Paddle)
+ [parl](https://github.com/PaddlePaddle/PARL)
+ gym
+ atari_py
+ atari-py
### Distributed Training
......
......@@ -24,7 +24,7 @@ Result with one learner (in a P40 GPU) and 32 actors (in 32 CPUs).
+ [paddlepaddle>=1.3.0](https://github.com/PaddlePaddle/Paddle)
+ [parl](https://github.com/PaddlePaddle/PARL)
+ gym
+ atari_py
+ atari-py
### Distributed Training:
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册