train.py 6.5 KB
Newer Older
F
fuyw 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import argparse
import cv2
import gym
import os
import threading
import torch
import parl

import numpy as np
from tqdm import tqdm
25
from parl.utils import summary, logger
F
fuyw 已提交
26 27 28
from parl.algorithms import DQN, DDQN

from agent import AtariAgent
L
LI Yunxiang 已提交
29
from atari_wrapper import FireResetEnv, FrameStack, LimitLength
F
fuyw 已提交
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45
from model import AtariModel
from replay_memory import ReplayMemory, Experience
from utils import get_player

MEMORY_SIZE = int(1e6)
MEMORY_WARMUP_SIZE = MEMORY_SIZE // 20
IMAGE_SIZE = (84, 84)
CONTEXT_LEN = 4
FRAME_SKIP = 4
UPDATE_FREQ = 4
GAMMA = 0.99


def run_train_episode(env, agent, rpm):
    total_reward = 0
    all_cost = []
L
LI Yunxiang 已提交
46
    obs = env.reset()
F
fuyw 已提交
47 48 49
    steps = 0
    while True:
        steps += 1
L
LI Yunxiang 已提交
50 51
        context = rpm.recent_obs()
        context.append(obs)
F
fuyw 已提交
52 53
        context = np.stack(context, axis=0)
        action = agent.sample(context)
L
LI Yunxiang 已提交
54 55
        next_obs, reward, isOver, _ = env.step(action)
        rpm.append(Experience(obs, action, reward, isOver))
F
fuyw 已提交
56 57
        if rpm.size() > MEMORY_WARMUP_SIZE:
            if steps % UPDATE_FREQ == 0:
L
LI Yunxiang 已提交
58
                batch_all_obs, batch_action, batch_reward, batch_isOver = rpm.sample_batch(
F
fuyw 已提交
59
                    args.batch_size)
L
LI Yunxiang 已提交
60 61 62 63
                batch_obs = batch_all_obs[:, :CONTEXT_LEN, :, :]
                batch_next_obs = batch_all_obs[:, 1:, :, :]
                cost = agent.learn(batch_obs, batch_action, batch_reward,
                                   batch_next_obs, batch_isOver)
F
fuyw 已提交
64 65
                all_cost.append(cost)
        total_reward += reward
L
LI Yunxiang 已提交
66
        obs = next_obs
F
fuyw 已提交
67 68 69 70 71 72
        if isOver:
            mean_loss = np.mean(all_cost) if all_cost else None
            return total_reward, steps, mean_loss


def run_evaluate_episode(env, agent):
L
LI Yunxiang 已提交
73
    obs = env.reset()
F
fuyw 已提交
74 75
    total_reward = 0
    while True:
L
LI Yunxiang 已提交
76
        pred_Q = agent.predict(obs)
F
fuyw 已提交
77
        action = pred_Q.max(1)[1].item()
L
LI Yunxiang 已提交
78
        obs, reward, isOver, _ = env.step(action)
F
fuyw 已提交
79 80 81 82 83
        total_reward += reward
        if isOver:
            return total_reward


L
LI Yunxiang 已提交
84 85
def get_fixed_obs(rpm, batch_size):
    obs = []
F
fuyw 已提交
86
    for _ in range(3):
L
LI Yunxiang 已提交
87 88 89 90 91
        batch_all_obs = rpm.sample_batch(batch_size)[0]
        batch_obs = batch_all_obs[:, :CONTEXT_LEN, :, :]
        obs.append(batch_obs)
    fixed_obs = np.concatenate(obs, axis=0)
    return fixed_obs
F
fuyw 已提交
92 93


L
LI Yunxiang 已提交
94
def evaluate_fixed_Q(agent, obs):
F
fuyw 已提交
95
    with torch.no_grad():
L
LI Yunxiang 已提交
96
        max_pred_Q = agent.alg.model(obs).max(1)[0].mean()
F
fuyw 已提交
97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123
    return max_pred_Q.item()


def get_grad_norm(model):
    total_norm = 0
    for p in model.parameters():
        if p.grad is not None:
            param_norm = p.grad.data.norm(2)
            total_norm += param_norm.item()**2
    total_norm = total_norm**(1. / 2)
    return total_norm


def main():
    env = get_player(
        args.rom, image_size=IMAGE_SIZE, train=True, frame_skip=FRAME_SKIP)
    test_env = get_player(
        args.rom,
        image_size=IMAGE_SIZE,
        frame_skip=FRAME_SKIP,
        context_len=CONTEXT_LEN)
    rpm = ReplayMemory(MEMORY_SIZE, IMAGE_SIZE, CONTEXT_LEN)
    act_dim = env.action_space.n
    device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
    model = AtariModel(CONTEXT_LEN, act_dim, args.algo)
    if args.algo in ['DQN', 'Dueling']:
        algorithm = DQN(model, gamma=GAMMA, lr=args.lr)
124
    elif args.algo == 'Double':
F
fuyw 已提交
125 126 127 128 129 130 131 132 133
        algorithm = DDQN(model, gamma=GAMMA, lr=args.lr)
    agent = AtariAgent(algorithm, act_dim=act_dim)

    with tqdm(
            total=MEMORY_WARMUP_SIZE, desc='[Replay Memory Warm Up]') as pbar:
        while rpm.size() < MEMORY_WARMUP_SIZE:
            total_reward, steps, _ = run_train_episode(env, agent, rpm)
            pbar.update(steps)

L
LI Yunxiang 已提交
134 135 136
    # Get fixed obs to check value function.
    fixed_obs = get_fixed_obs(rpm, args.batch_size)
    fixed_obs = torch.tensor(fixed_obs, dtype=torch.float, device=device)
F
fuyw 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154

    # train
    test_flag = 0
    total_steps = 0

    with tqdm(total=args.train_total_steps, desc='[Training Model]') as pbar:
        while total_steps < args.train_total_steps:
            total_reward, steps, loss = run_train_episode(env, agent, rpm)
            total_steps += steps
            pbar.update(steps)
            if total_steps // args.test_every_steps >= test_flag:
                while total_steps // args.test_every_steps >= test_flag:
                    test_flag += 1

                eval_rewards = []
                for _ in range(3):
                    eval_rewards.append(run_evaluate_episode(test_env, agent))

155 156 157 158 159 160 161 162 163 164 165
                summary.add_scalar('dqn/eval', np.mean(eval_rewards),
                                   total_steps)
                summary.add_scalar('dqn/score', total_reward, total_steps)
                summary.add_scalar('dqn/loss', loss, total_steps)
                summary.add_scalar('dqn/exploration', agent.exploration,
                                   total_steps)
                summary.add_scalar('dqn/Q value',
                                   evaluate_fixed_Q(agent, fixed_obs),
                                   total_steps)
                summary.add_scalar('dqn/grad_norm',
                                   get_grad_norm(agent.alg.model), total_steps)
F
fuyw 已提交
166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188


if __name__ == '__main__':
    parser = argparse.ArgumentParser()
    parser.add_argument('--rom', default='rom_files/breakout.bin')
    parser.add_argument(
        '--batch_size', type=int, default=32, help='batch size for training')
    parser.add_argument('--lr', default=3e-4, help='learning_rate')
    parser.add_argument('--algo', default='DQN', help='DQN/Double/Dueling DQN')
    parser.add_argument(
        '--train_total_steps',
        type=int,
        default=int(1e7),
        help='maximum environmental steps of games')
    parser.add_argument(
        '--test_every_steps',
        type=int,
        default=int(1e5),
        help='the step interval between two consecutive evaluations')
    args = parser.parse_args()
    rom_name = args.rom.split('/')[-1].split('.')[0]
    logger.set_dir(os.path.join('./train_log', rom_name))
    main()