atari_agent.py 5.1 KB
Newer Older
L
LI Yunxiang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle.fluid as fluid
import parl
from parl import layers

IMAGE_SIZE = (84, 84)
CONTEXT_LEN = 4


class AtariAgent(parl.Agent):
    def __init__(self, algorithm, act_dim, total_step):
        super(AtariAgent, self).__init__(algorithm)
        assert isinstance(act_dim, int)
        self.act_dim = act_dim
        self.exploration = 1.1
        self.global_step = 0
        self.update_target_steps = 10000 // 4

    def build_program(self):
        self.pred_program = fluid.Program()
        self.learn_program = fluid.Program()
        self.supervised_eval_program = fluid.Program()

        with fluid.program_guard(self.pred_program):
            obs = layers.data(
                name='obs',
                shape=[CONTEXT_LEN, IMAGE_SIZE[0], IMAGE_SIZE[1]],
                dtype='float32')
            self.value = self.alg.predict(obs)

        with fluid.program_guard(self.learn_program):
            obs = layers.data(
                name='obs',
                shape=[CONTEXT_LEN, IMAGE_SIZE[0], IMAGE_SIZE[1]],
                dtype='float32')
            action = layers.data(name='act', shape=[1], dtype='int32')
            reward = layers.data(name='reward', shape=[], dtype='float32')
            next_obs = layers.data(
                name='next_obs',
                shape=[CONTEXT_LEN, IMAGE_SIZE[0], IMAGE_SIZE[1]],
                dtype='float32')
            terminal = layers.data(name='terminal', shape=[], dtype='bool')
            self.cost = self.alg.learn(obs, action, reward, next_obs, terminal)

        # use parl.compile to distribute data and model to GPUs
        self.learn_program = parl.compile(self.learn_program, loss=self.cost)

        with fluid.program_guard(self.supervised_eval_program):
            obs = layers.data(
                name='obs',
                shape=[CONTEXT_LEN, IMAGE_SIZE[0], IMAGE_SIZE[1]],
                dtype='float32')
            action = layers.data(name='act', shape=[1], dtype='int32')
            reward = layers.data(name='reward', shape=[], dtype='float32')
            next_obs = layers.data(
                name='next_obs',
                shape=[CONTEXT_LEN, IMAGE_SIZE[0], IMAGE_SIZE[1]],
                dtype='float32')
            terminal = layers.data(name='terminal', shape=[], dtype='bool')
            self.supervised_cost = self.alg.supervised_eval(
                obs, action, reward, next_obs, terminal)

    def sample(self, obs):
        sample = np.random.random()
        if sample < self.exploration:
            act = np.random.randint(self.act_dim)
        else:
            if np.random.random() < 0.01:
                act = np.random.randint(self.act_dim)
            else:
                obs = np.expand_dims(obs, axis=0)
                pred_Q = self.fluid_executor.run(
                    self.pred_program,
                    feed={'obs': obs.astype('float32')},
                    fetch_list=[self.value])[0]
                pred_Q = np.squeeze(pred_Q, axis=0)
                act = np.argmax(pred_Q)
        self.exploration = max(0.1, self.exploration - 1e-6)
        return act

    def predict(self, obs):
        obs = np.expand_dims(obs, axis=0)
        pred_Q = self.fluid_executor.run(
            self.pred_program,
            feed={'obs': obs.astype('float32')},
            fetch_list=[self.value])[0]
        pred_Q = np.squeeze(pred_Q, axis=0)
        act = np.argmax(pred_Q)
        return act

    def learn(self, obs, act, reward, next_obs, terminal):
        if self.global_step % self.update_target_steps == 0:
            self.alg.sync_target()
        self.global_step += 1

        act = np.expand_dims(act, -1)
        reward = np.clip(reward, -1, 1)
        feed = {
            'obs': obs.astype('float32'),
            'act': act.astype('int32'),
            'reward': reward,
            'next_obs': next_obs.astype('float32'),
            'terminal': terminal
        }
        cost = self.fluid_executor.run(
            self.learn_program, feed=feed, fetch_list=[self.cost])[0]
        return cost

    def supervised_eval(self, obs, act, reward, next_obs, terminal):
        act = np.expand_dims(act, -1)
        reward = np.clip(reward, -1, 1)
        feed = {
            'obs': obs.astype('float32'),
            'act': act.astype('int32'),
            'reward': reward,
            'next_obs': next_obs.astype('float32'),
            'terminal': terminal
        }
        cost = self.fluid_executor.run(
            self.supervised_eval_program,
            feed=feed,
            fetch_list=[self.supervised_cost])[0]
        return cost