lift_agent.py 5.8 KB
Newer Older
H
Hongsheng Zeng 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import parl
import paddle.fluid as fluid
import numpy as np
from parl import layers
from parl.utils.scheduler import PiecewiseScheduler, LinearDecayScheduler


class LiftAgent(parl.Agent):
    def __init__(self, algorithm, config):
        """
        Args:
            algorithm (`parl.Algorithm`): algorithm to be used in this agent.
            config (dict): config describing the training hyper-parameters(see a2c_config.py)
        """
        self.obs_dim = config['obs_dim']
        super(LiftAgent, self).__init__(algorithm)

        self.lr_scheduler = LinearDecayScheduler(config['start_lr'],
                                                 config['max_sample_steps'])
        self.entropy_coeff_scheduler = PiecewiseScheduler(
            config['entropy_coeff_scheduler'])

    def build_program(self):
        self.sample_program = fluid.Program()
        self.predict_program = fluid.Program()
        self.value_program = fluid.Program()
        self.learn_program = fluid.Program()

        with fluid.program_guard(self.sample_program):
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            sample_actions, values = self.alg.sample(obs)
            self.sample_outputs = [sample_actions, values]

        with fluid.program_guard(self.predict_program):
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            self.predict_actions = self.alg.predict(obs)

        with fluid.program_guard(self.value_program):
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            self.values = self.alg.value(obs)

        with fluid.program_guard(self.learn_program):
            obs = layers.data(
                name='obs', shape=[self.obs_dim], dtype='float32')
            actions = layers.data(name='actions', shape=[], dtype='int32')
            advantages = layers.data(
                name='advantages', shape=[], dtype='float32')
            target_values = layers.data(
                name='target_values', shape=[], dtype='float32')
            lr = layers.data(
                name='lr', shape=[1], dtype='float32', append_batch_size=False)
            entropy_coeff = layers.data(
70 71 72 73
                name='entropy_coeff',
                shape=[1],
                dtype='float32',
                append_batch_size=False)
H
Hongsheng Zeng 已提交
74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156

            total_loss, pi_loss, vf_loss, entropy = self.alg.learn(
                obs, actions, advantages, target_values, lr, entropy_coeff)
            self.learn_outputs = [total_loss, pi_loss, vf_loss, entropy]
        self.learn_program = parl.compile(self.learn_program, total_loss)

    def sample(self, obs_np):
        """
        Args:
            obs_np: a numpy float32 array of shape (B, obs_dim).

        Returns:
            sample_ids: a numpy int64 array of shape [B]
            values: a numpy float32 array of shape [B]
        """
        obs_np = obs_np.astype('float32')

        sample_actions, values = self.fluid_executor.run(
            self.sample_program,
            feed={'obs': obs_np},
            fetch_list=self.sample_outputs)
        return sample_actions, values

    def predict(self, obs_np):
        """
        Args:
            obs_np: a numpy float32 array of shape (B, obs_dim).

        Returns:
            predict_actions: a numpy int64 array of shape [B]
        """
        obs_np = obs_np.astype('float32')

        predict_actions = self.fluid_executor.run(
            self.predict_program,
            feed={'obs': obs_np},
            fetch_list=[self.predict_actions])[0]
        return predict_actions

    def value(self, obs_np):
        """
        Args:
            obs_np: a numpy float32 array of shape (B, obs_dim).

        Returns:
            values: a numpy float32 array of shape [B]
        """
        obs_np = obs_np.astype('float32')

        values = self.fluid_executor.run(
            self.value_program, feed={'obs': obs_np},
            fetch_list=[self.values])[0]
        return values

    def learn(self, obs_np, actions_np, advantages_np, target_values_np):
        """
        Args:
            obs_np: a numpy float32 array of shape (B, obs_dim).
            actions_np: a numpy int64 array of shape [B]
            advantages_np: a numpy float32 array of shape [B]
            target_values_np: a numpy float32 array of shape [B]
        """

        obs_np = obs_np.astype('float32')
        actions_np = actions_np.astype('int64')
        advantages_np = advantages_np.astype('float32')
        target_values_np = target_values_np.astype('float32')

        lr = self.lr_scheduler.step(step_num=obs_np.shape[0])
        entropy_coeff = self.entropy_coeff_scheduler.step()

        total_loss, pi_loss, vf_loss, entropy = self.fluid_executor.run(
            self.learn_program,
            feed={
                'obs': obs_np,
                'actions': actions_np,
                'advantages': advantages_np,
                'target_values': target_values_np,
                'lr': np.array([lr], dtype='float32'),
                'entropy_coeff': np.array([entropy_coeff], dtype='float32')
            },
            fetch_list=self.learn_outputs)
        return total_loss, pi_loss, vf_loss, entropy, lr, entropy_coeff