sc2_agent.py 9.4 KB
Newer Older
R
rical730 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237
#   Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import parl
import torch
from torch.distributions import Categorical

device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')


class Agents(parl.Agent):
    def __init__(self, algorithm, config):
        self.n_actions = config['n_actions']
        self.n_agents = config['n_agents']
        self.state_shape = config['state_shape']
        self.obs_shape = config['obs_shape']

        self.config = config
        self.train_steps = 0
        self.rnn_h = None
        super(Agents, self).__init__(algorithm)
        print('Init all agents')

    def init_hidden(self):
        """ function: init a hidden tensor for every agent at the begging of every episode
            self.rnn_h: rnn hidden state, shape (n_agents, hidden_size)
        """
        self.rnn_h = self.alg.init_hidden(1)[0]

    def predict(self, obs, rnn_h_in):
        """input:
                obs: obs + last_action + agent_id, shape: (1, obs_shape + n_actions + n_agents)
                rnn_h_in: rnn's hidden input
            output:
                prob: output of actor, shape: (1, n_actions)
                rnn_h_out: rnn's hidden output
        """
        obs = np.expand_dims(obs, 0)
        obs = torch.tensor(obs, dtype=torch.float32).to(device)
        prob, rnn_h_out = self.alg.predict(obs, rnn_h_in)
        return prob, rnn_h_out

    def sample(self,
               obs,
               last_action,
               agent_id,
               avail_actions,
               epsilon,
               test=False):
        """input:
                obs (array): agent i's obs
                last_action (int): agent i's last action
                agent_id (int): agent index
                avail_actions (one_hot): available actions
                epsilon (float): e_greed discount
                test (bool): train or test
            output:
                action: int
                prob: probability of every action, float, 0 ~ 1
        """
        obs = obs.copy()
        # make obs: obs + agent's last action(one_hot) + agent's id(one_hot)
        last_act_one_hot = np.zeros(self.n_actions)
        last_act_one_hot[last_action] = 1.
        id_one_hot = np.zeros(self.n_agents)
        id_one_hot[agent_id] = 1.
        obs = np.hstack((obs, last_act_one_hot))
        obs = np.hstack((obs, id_one_hot))

        # predict action prob
        prob, self.rnn_h[agent_id] = self.predict(obs, self.rnn_h[agent_id])

        # add noise
        avail_actions = torch.tensor(
            avail_actions, dtype=torch.float32).unsqueeze(0).to(
                device)  # shape: (1, n_actions)
        action_num = avail_actions.sum()  # how many actions are available
        prob = ((1 - epsilon) * prob +
                torch.ones_like(prob) * epsilon / action_num)
        prob[avail_actions == 0] = 0.0  # set avail action

        # choose action
        if epsilon == 0 or test:
            action = torch.argmax(prob)
        else:
            action = Categorical(prob).sample().long()
        return action.cpu()

    def _get_actor_inputs(self, batch):
        """ o(t), u(t-1)_a, agent_id
        """
        obs = batch['o']
        u_onehot = batch['u_onehot']
        u_onehot_last = np.zeros_like(u_onehot)
        u_onehot_last[:, 1:] = u_onehot[:, :-1]
        ep_num = batch['o'].shape[0]
        tr_num = batch['o'].shape[1]

        actor_inputs = []
        for agent_id in range(self.n_agents):
            obs_a = obs[:, :, agent_id]
            u_a_onehot_last = u_onehot_last[:, :, agent_id]
            id_onehot = np.zeros((ep_num, tr_num, self.n_agents))
            id_onehot[:, :, agent_id] = 1.
            # actor inputs: obs + agent's last action(one_hot) + agent's id(one_hot)
            a_inputs = np.concatenate((obs_a, u_a_onehot_last, id_onehot),
                                      axis=2)
            # a_inpits shape (ep_num, tr_num, actor_input_dim)
            actor_inputs.append(a_inputs)

        actor_inputs = np.stack(
            actor_inputs,
            axis=2)  # shape (ep_num, tr_num, n_agents, actor_input_dim)
        return actor_inputs

    def _get_critic_inputs(self, batch):
        """ o(t)_a, s(t), u(t)_-a, u(t-1), agent_id
        """
        ep_num = batch['o'].shape[0]
        tr_num = batch['o'].shape[1]

        # o, o_next, state, state_next
        o = batch['o']  # shape (ep_num, tr_num, n_agents, obs_shape)
        o_next = np.zeros_like(o)
        o_next[:, :-1] = o[:, 1:]
        s = batch['s']  # shape (ep_num, tr_num, state_shape)
        s_next = np.zeros_like(s)
        s_next[:, :-1] = s[:, 1:]
        # u_onehot, u_onehot_last shape (ep_num, tr_num, n_agents, n_actions)
        u_onehot = batch['u_onehot']
        u_onehot_next = np.zeros_like(u_onehot)
        u_onehot_next[:, :-1] = u_onehot[:, 1:]
        u_onehot_last = np.zeros_like(u_onehot)
        u_onehot_last[:, 1:] = u_onehot[:, :-1]

        critic_inputs = []
        critic_inputs_next = []
        for agent_id in range(self.n_agents):
            # get o(t)_a, s(t)
            o_a = o[:, :, agent_id]  # shape (ep_num, tr_num, obs_shape)
            o_a_next = o_next[:, :, agent_id]
            s_a = s  # shape (ep_num, tr_num, state_shape)
            s_a_next = s_next
            # get u(t-1)  shape (ep_num, tr_num, n_agents * n_actions)
            u_all_onehot = u_onehot.reshape((ep_num, tr_num,
                                             self.n_agents * self.n_actions))
            u_all_onehot_next = u_onehot_next.reshape(
                (ep_num, tr_num, self.n_agents * self.n_actions))
            u_all_onehot_last = u_onehot_last.reshape(
                (ep_num, tr_num, self.n_agents * self.n_actions))
            # get u(t)_-a,   set 0 to mask action, shape (ep_num, tr_num, n_agents * n_actions)
            u_not_a_onehot = u_all_onehot.copy()
            u_not_a_onehot_next = u_all_onehot_next.copy()
            m_s = agent_id * self.n_actions  # mask start flag
            m_e = (agent_id + 1) * self.n_actions  # mask end flag
            u_not_a_onehot[:, :, m_s:m_e] = 0
            u_not_a_onehot_next[:, :, m_s:m_e] = 0
            # get id onehot, shape (ep_num, tr_num, n_agents)
            id_onehot = np.zeros((ep_num, tr_num, self.n_agents))
            id_onehot[:, :, agent_id] = 1.

            # input:      o,      s,      u_-a,      u_last, agent_id
            # input_next: o_next, s_next, u_-a_next, u,      agent_id
            # shape (ep_num, tr_num, critic_input_dim)
            c_inputs = np.concatenate(
                (o_a, s_a, u_not_a_onehot, u_all_onehot_last, id_onehot),
                axis=2)
            c_inputs_next = np.concatenate(
                (o_a_next, s_a_next, u_not_a_onehot_next, u_all_onehot,
                 id_onehot),
                axis=2)
            critic_inputs.append(c_inputs)
            critic_inputs_next.append(c_inputs_next)
        critic_inputs = np.stack(critic_inputs, axis=2)
        critic_inputs_next = np.stack(critic_inputs_next, axis=2)
        # shape (ep_num, tr_num, n_agents, critic_input_dim)
        return critic_inputs, critic_inputs_next

    def _get_avail_transitions_num(self, isover_batch):
        """ input:
                isover_batch: shape (ep_num, tr_num, 1)
            output: 
                max_tr_num: max avail transitions number in all episodes
        """
        ep_num = isover_batch.shape[0]
        max_tr_num = 0
        for ep_id in range(ep_num):
            for tr_id in range(self.config['episode_limit']):
                if isover_batch[ep_id, tr_id, 0] == 1:
                    if tr_id + 1 >= max_tr_num:
                        max_tr_num = tr_id + 1
                    break
        return max_tr_num

    def learn(self, batch, epsilon=None):
        """ input:
                batch: dict(o, s, u, r, u_onehot, avail_u, padded, isover)
                epsilon: e-greedy discount
        """
        # different episode has different avail transition length
        tr_num = self._get_avail_transitions_num(batch['isover'])
        for key in batch.keys():
            # cut batch data's episode length
            batch[key] = batch[key][:, :tr_num]

        # get actor input and critic input
        batch['actor_inputs'] = self._get_actor_inputs(batch)
        batch['critic_inputs'], batch[
            'critic_inputs_next'] = self._get_critic_inputs(batch)

        # change batch data to torch tensor
        for key in batch.keys():
            if key == 'u':
                batch[key] = torch.tensor(
                    batch[key], dtype=torch.long).to(device)
            else:
                batch[key] = torch.tensor(
                    batch[key], dtype=torch.float32).to(device)

        self.alg.learn(batch, epsilon)

        if self.train_steps > 0 and self.train_steps % self.config[
                'target_update_cycle'] == 0:
            self.alg.sync_target()
        self.train_steps += 1