未验证 提交 de37fd75 编写于 作者: X Xiaoyao Xi 提交者: GitHub

Merge pull request #42 from wangxiao1021/AddPairwise

add pairwise L2R
......@@ -44,6 +44,11 @@ class Model(backbone):
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._phase = phase
if 'learning_strategy' in config:
self._learning_strategy = config['learning_strategy']
else:
self._learning_strategy = 'pointwise'
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
......@@ -52,18 +57,32 @@ class Model(backbone):
@property
def inputs_attr(self):
return {"token_ids": [[-1, -1], 'int64'],
ret = {"token_ids": [[-1, -1], 'int64'],
"position_ids": [[-1, -1], 'int64'],
"segment_ids": [[-1, -1], 'int64'],
"input_mask": [[-1, -1, 1], 'float32']}
"input_mask": [[-1, -1, 1], 'float32'],
}
if self._learning_strategy == 'pairwise' and self._phase=='train':
ret.update({"token_ids_neg": [[-1, -1], 'int64'],
"position_ids_neg": [[-1, -1], 'int64'],
"segment_ids_neg": [[-1, -1], 'int64'],
"input_mask_neg": [[-1, -1, 1], 'float32'],
})
return ret
@property
def outputs_attr(self):
return {"word_embedding": [[-1, -1, self._emb_size], 'float32'],
ret = {"word_embedding": [[-1, -1, self._emb_size], 'float32'],
"embedding_table": [[-1, self._voc_size, self._emb_size], 'float32'],
"encoder_outputs": [[-1, -1, self._emb_size], 'float32'],
"sentence_embedding": [[-1, self._emb_size], 'float32'],
"sentence_pair_embedding": [[-1, self._emb_size], 'float32']}
if self._learning_strategy == 'pairwise' and self._phase == 'train':
ret.update({"word_embedding_neg": [[-1, -1, self._emb_size], 'float32'],
"encoder_outputs_neg": [[-1, -1, self._emb_size], 'float32'],
"sentence_embedding_neg": [[-1, self._emb_size], 'float32'],
"sentence_pair_embedding_neg": [[-1, self._emb_size], 'float32']})
return ret
def build(self, inputs, scope_name=""):
src_ids = inputs['token_ids']
......@@ -72,6 +91,21 @@ class Model(backbone):
input_mask = inputs['input_mask']
self._emb_dtype = 'float32'
input_buffer = {}
output_buffer = {}
input_buffer['base'] = [src_ids, pos_ids, sent_ids, input_mask]
output_buffer['base'] = {}
if self._learning_strategy == 'pairwise' and self._phase =='train':
src_ids = inputs['token_ids_neg']
pos_ids = inputs['position_ids_neg']
sent_ids = inputs['segment_ids_neg']
input_mask = inputs['input_mask_neg']
input_buffer['neg'] = [src_ids, pos_ids, sent_ids, input_mask]
output_buffer['neg'] = {}
for key, (src_ids, pos_ids, sent_ids, input_mask) in input_buffer.items():
# padding id in vocabulary must be set to 0
emb_out = fluid.embedding(
input=src_ids,
......@@ -142,12 +176,25 @@ class Model(backbone):
param_attr=fluid.ParamAttr(
name=scope_name+"pooled_fc.w_0", initializer=self._param_initializer),
bias_attr=scope_name+"pooled_fc.b_0")
return {'embedding_table': embedding_table,
'word_embedding': emb_out,
'encoder_outputs': enc_out,
'sentence_embedding': next_sent_feat,
'sentence_pair_embedding': next_sent_feat}
output_buffer[key]['word_embedding'] = emb_out
output_buffer[key]['encoder_outputs'] = enc_out
output_buffer[key]['sentence_embedding'] = next_sent_feat
output_buffer[key]['sentence_pair_embedding'] = next_sent_feat
ret = {}
ret['embedding_table'] = embedding_table
ret['word_embedding'] = output_buffer['base']['word_embedding']
ret['encoder_outputs'] = output_buffer['base']['encoder_outputs']
ret['sentence_embedding'] = output_buffer['base']['sentence_embedding']
ret['sentence_pair_embedding'] = output_buffer['base']['sentence_pair_embedding']
if self._learning_strategy == 'pairwise' and self._phase == 'train':
ret['word_embedding_neg'] = output_buffer['neg']['word_embedding']
ret['encoder_outputs_neg'] = output_buffer['neg']['encoder_outputs']
ret['sentence_embedding_neg'] = output_buffer['neg']['sentence_embedding']
ret['sentence_pair_embedding_neg'] = output_buffer['neg']['sentence_pair_embedding']
return ret
def postprocess(self, rt_outputs):
pass
......
......@@ -40,6 +40,10 @@ class Model(backbone):
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
if 'learning_strategy' in config:
self._learning_strategy = config['learning_strategy']
else:
self._learning_strategy = 'pointwise'
if config['sent_type_vocab_size']:
self._sent_types = config['sent_type_vocab_size']
else:
......@@ -56,25 +60,41 @@ class Model(backbone):
self._sent_emb_name = "sent_embedding"
self._task_emb_name = "task_embedding"
self._emb_dtype = "float32"
self._phase = phase
self._param_initializer = fluid.initializer.TruncatedNormal(
scale=config['initializer_range'])
@property
def inputs_attr(self):
return {"token_ids": [[-1, -1], 'int64'],
ret = {"token_ids": [[-1, -1], 'int64'],
"position_ids": [[-1, -1], 'int64'],
"segment_ids": [[-1, -1], 'int64'],
"input_mask": [[-1, -1, 1], 'float32'],
"task_ids": [[-1,-1], 'int64']}
"task_ids": [[-1, -1], 'int64']
}
if self._learning_strategy == 'pairwise' and self._phase=='train':
ret.update({"token_ids_neg": [[-1, -1], 'int64'],
"position_ids_neg": [[-1, -1], 'int64'],
"segment_ids_neg": [[-1, -1], 'int64'],
"input_mask_neg": [[-1, -1, 1], 'float32'],
"task_ids_neg": [[-1, -1], 'int64']
})
return ret
@property
def outputs_attr(self):
return {"word_embedding": [[-1, -1, self._emb_size], 'float32'],
ret = {"word_embedding": [[-1, -1, self._emb_size], 'float32'],
"embedding_table": [[-1, self._voc_size, self._emb_size], 'float32'],
"encoder_outputs": [[-1, -1, self._emb_size], 'float32'],
"sentence_embedding": [[-1, self._emb_size], 'float32'],
"sentence_pair_embedding": [[-1, self._emb_size], 'float32']}
if self._learning_strategy == 'pairwise' and self._phase == 'train':
ret.update({"word_embedding_neg": [[-1, -1, self._emb_size], 'float32'],
"encoder_outputs_neg": [[-1, -1, self._emb_size], 'float32'],
"sentence_embedding_neg": [[-1, self._emb_size], 'float32'],
"sentence_pair_embedding_neg": [[-1, self._emb_size], 'float32']})
return ret
def build(self, inputs, scope_name=""):
......@@ -84,6 +104,21 @@ class Model(backbone):
input_mask = inputs['input_mask']
task_ids = inputs['task_ids']
input_buffer = {}
output_buffer = {}
input_buffer['base'] = [src_ids, pos_ids, sent_ids, input_mask, task_ids]
output_buffer['base'] = {}
if self._learning_strategy == 'pairwise' and self._phase =='train':
src_ids = inputs['token_ids_neg']
pos_ids = inputs['position_ids_neg']
sent_ids = inputs['segment_ids_neg']
input_mask = inputs['input_mask_neg']
task_ids = inputs['task_ids_neg']
input_buffer['neg'] = [src_ids, pos_ids, sent_ids, input_mask, task_ids]
output_buffer['neg'] = {}
for key, (src_ids, pos_ids, sent_ids, input_mask, task_ids) in input_buffer.items():
# padding id in vocabulary must be set to 0
emb_out = fluid.embedding(
input=src_ids,
......@@ -153,7 +188,6 @@ class Model(backbone):
param_initializer=self._param_initializer,
name=scope_name+'encoder')
next_sent_feat = fluid.layers.slice(
input=enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.reshape(next_sent_feat, [-1, next_sent_feat.shape[-1]])
......@@ -165,11 +199,25 @@ class Model(backbone):
name=scope_name+"pooled_fc.w_0", initializer=self._param_initializer),
bias_attr=scope_name+"pooled_fc.b_0")
return {'embedding_table': embedding_table,
'word_embedding': emb_out,
'encoder_outputs': enc_out,
'sentence_embedding': next_sent_feat,
'sentence_pair_embedding': next_sent_feat}
output_buffer[key]['word_embedding'] = emb_out
output_buffer[key]['encoder_outputs'] = enc_out
output_buffer[key]['sentence_embedding'] = next_sent_feat
output_buffer[key]['sentence_pair_embedding'] = next_sent_feat
ret = {}
ret['embedding_table'] = embedding_table
ret['word_embedding'] = output_buffer['base']['word_embedding']
ret['encoder_outputs'] = output_buffer['base']['encoder_outputs']
ret['sentence_embedding'] = output_buffer['base']['sentence_embedding']
ret['sentence_pair_embedding'] = output_buffer['base']['sentence_pair_embedding']
if self._learning_strategy == 'pairwise' and self._phase == 'train':
ret['word_embedding_neg'] = output_buffer['neg']['word_embedding']
ret['encoder_outputs_neg'] = output_buffer['neg']['encoder_outputs']
ret['sentence_embedding_neg'] = output_buffer['neg']['sentence_embedding']
ret['sentence_pair_embedding_neg'] = output_buffer['neg']['sentence_pair_embedding']
return ret
def postprocess(self, rt_outputs):
pass
......@@ -397,6 +397,7 @@ class Controller(object):
iterators = []
prefixes = []
mrs = []
for inst in instances:
iterators.append(inst.reader['train'].iterator())
prefixes.append(inst.name)
......@@ -415,6 +416,7 @@ class Controller(object):
train_prog = fluid.default_main_program()
train_init_prog = fluid.default_startup_program()
bb_output_vars = train_backbone.build(net_inputs, scope_name='__paddlepalm_')
assert sorted(bb_output_vars.keys()) == sorted(train_backbone.outputs_attr.keys())
pred_prog = fluid.Program()
......@@ -435,15 +437,14 @@ class Controller(object):
scope = inst.task_reuse_scope + '/'
with fluid.unique_name.guard(scope):
output_vars = inst.build_task_layer(task_inputs, phase='train', scope=scope)
output_vars = {inst.name+'/'+key: val for key, val in output_vars.items()}
old = len(task_output_vars) # for debug
task_output_vars.update(output_vars)
assert len(task_output_vars) - old == len(output_vars) # for debug
# prepare predict vars for saving inference model
if inst.is_target:
with fluid.program_guard(pred_prog, pred_init_prog):
cur_inputs = _decode_inputs(pred_net_inputs, inst.name)
inst.pred_input = cur_inputs
......@@ -720,7 +721,6 @@ class Controller(object):
for feed in inst.reader['pred'].iterator():
feed = _encode_inputs(feed, inst.name, cand_set=mapper)
feed = {mapper[k]: v for k,v in feed.items()}
rt_outputs = self.exe.run(pred_prog, feed, fetch_vars)
rt_outputs = {k:v for k,v in zip(fetch_names, rt_outputs)}
inst.postprocess(rt_outputs, phase='pred')
......
......@@ -85,9 +85,8 @@ class Reader(reader):
def list_to_dict(x):
names = ['token_ids', 'segment_ids', 'position_ids', 'task_ids', 'input_mask',
'label_ids', 'unique_ids']
'label_ids']
outputs = {n: i for n,i in zip(names, x)}
del outputs['unique_ids']
if not self._is_training:
del outputs['label_ids']
return outputs
......
......@@ -25,12 +25,20 @@ class Reader(reader):
"""
self._is_training = phase == 'train'
if 'learning_strategy' in config:
self._learning_strategy = config['learning_strategy']
else:
self._learning_strategy = 'pointwise'
reader = ClassifyReader(config['vocab_path'],
max_seq_len=config['max_seq_len'],
do_lower_case=config.get('do_lower_case', True),
for_cn=config.get('for_cn', False),
random_seed=config.get('seed', None))
random_seed=config.get('seed', None),
learning_strategy=self._learning_strategy,
phase=phase
)
self._reader = reader
self._dev_count = dev_count
......@@ -59,21 +67,23 @@ class Reader(reader):
@property
def outputs_attr(self):
if self._is_training:
return {"token_ids": [[-1, -1], 'int64'],
returns = {"token_ids": [[-1, -1], 'int64'],
"position_ids": [[-1, -1], 'int64'],
"segment_ids": [[-1, -1], 'int64'],
"input_mask": [[-1, -1, 1], 'float32'],
"label_ids": [[-1], 'int64'],
"task_ids": [[-1, -1], 'int64']
}
else:
return {"token_ids": [[-1, -1], 'int64'],
"position_ids": [[-1, -1], 'int64'],
"segment_ids": [[-1, -1], 'int64'],
"task_ids": [[-1, -1], 'int64'],
"input_mask": [[-1, -1, 1], 'float32']
}
if self._is_training:
if self._learning_strategy == 'pointwise':
returns.update({"label_ids": [[-1], 'int64']})
elif self._learning_strategy == 'pairwise':
returns.update({"token_ids_neg": [[-1, -1], 'int64'],
"position_ids_neg": [[-1, -1], 'int64'],
"segment_ids_neg": [[-1, -1], 'int64'],
"input_mask_neg": [[-1, -1, 1], 'float32'],
"task_ids_neg": [[-1, -1], 'int64']
})
return returns
def load_data(self):
......@@ -82,17 +92,20 @@ class Reader(reader):
def iterator(self):
def list_to_dict(x):
names = ['token_ids', 'segment_ids', 'position_ids', 'task_ids', 'input_mask',
'label_ids', 'unique_ids']
names = ['token_ids', 'segment_ids', 'position_ids', 'task_ids', 'input_mask']
if self._is_training:
if self._learning_strategy == 'pairwise':
names += ['token_ids_neg', 'segment_ids_neg', 'position_ids_neg', 'task_ids_neg', 'input_mask_neg']
elif self._learning_strategy == 'pointwise':
names += ['label_ids']
outputs = {n: i for n,i in zip(names, x)}
del outputs['unique_ids']
if not self._is_training:
del outputs['label_ids']
return outputs
for batch in self._data_generator():
yield list_to_dict(batch)
@property
def num_examples(self):
return self._reader.get_num_examples(phase=self._phase)
......
......@@ -57,8 +57,10 @@ class BaseReader(object):
do_lower_case=True,
in_tokens=False,
is_inference=False,
learning_strategy='pointwise',
random_seed=None,
tokenizer="FullTokenizer",
phase='train',
is_classify=True,
is_regression=False,
for_cn=True,
......@@ -72,7 +74,9 @@ class BaseReader(object):
self.sep_id = self.vocab["[SEP]"]
self.mask_id = self.vocab["[MASK]"]
self.in_tokens = in_tokens
self.phase = phase
self.is_inference = is_inference
self.learning_strategy = learning_strategy
self.for_cn = for_cn
self.task_id = task_id
......@@ -125,33 +129,41 @@ class BaseReader(object):
else:
tokens_b.pop()
def _convert_example_to_record(self, example, max_seq_length, tokenizer):
"""Converts a single `Example` into a single `Record`."""
text_a = tokenization.convert_to_unicode(example.text_a)
tokens_a = tokenizer.tokenize(text_a)
tokens_b = None
has_text_b = False
has_text_b_neg = False
if isinstance(example, dict):
has_text_b = "text_b" in example.keys()
has_text_b_neg = "text_b_neg" in example.keys()
else:
has_text_b = "text_b" in example._fields
has_text_b_neg = "text_b_neg" in example._fields
if has_text_b:
text_b = tokenization.convert_to_unicode(example.text_b)
tokens_b = tokenizer.tokenize(text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
if has_text_b_neg and self.phase == 'train':
tokens_a_neg = tokenizer.tokenize(text_a)
text_b_neg = tokenization.convert_to_unicode(example.text_b_neg)
tokens_b_neg = tokenizer.tokenize(text_b_neg)
self._truncate_seq_pair(tokens_a_neg, tokens_b_neg, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
# The convention in BERT/ERNIE is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
......@@ -173,6 +185,7 @@ class BaseReader(object):
tokens = []
text_type_ids = []
tokens.append("[CLS]")
text_type_ids.append(0)
for token in tokens_a:
tokens.append(token)
......@@ -190,6 +203,29 @@ class BaseReader(object):
token_ids = tokenizer.convert_tokens_to_ids(tokens)
position_ids = list(range(len(token_ids)))
if has_text_b_neg and self.phase == 'train':
tokens_neg = []
text_type_ids_neg = []
tokens_neg.append("[CLS]")
text_type_ids_neg.append(0)
for token in tokens_a_neg:
tokens_neg.append(token)
text_type_ids_neg.append(0)
tokens_neg.append("[SEP]")
text_type_ids_neg.append(0)
if tokens_b_neg:
for token in tokens_b_neg:
tokens_neg.append(token)
text_type_ids_neg.append(1)
tokens_neg.append("[SEP]")
text_type_ids_neg.append(1)
token_ids_neg = tokenizer.convert_tokens_to_ids(tokens_neg)
position_ids_neg = list(range(len(token_ids_neg)))
if self.is_inference:
Record = namedtuple('Record',
['token_ids', 'text_type_ids', 'position_ids'])
......@@ -197,6 +233,23 @@ class BaseReader(object):
token_ids=token_ids,
text_type_ids=text_type_ids,
position_ids=position_ids)
else:
qid = None
if "qid" in example._fields:
qid = example.qid
if self.learning_strategy == 'pairwise' and self.phase == 'train':
Record = namedtuple('Record',
['token_ids', 'text_type_ids', 'position_ids', 'token_ids_neg', 'text_type_ids_neg', 'position_ids_neg', 'qid'])
record = Record(
token_ids=token_ids,
text_type_ids=text_type_ids,
position_ids=position_ids,
token_ids_neg=token_ids_neg,
text_type_ids_neg=text_type_ids_neg,
position_ids_neg=position_ids_neg,
qid=qid)
else:
if self.label_map:
label_id = self.label_map[example.label]
......@@ -207,10 +260,6 @@ class BaseReader(object):
'token_ids', 'text_type_ids', 'position_ids', 'label_id', 'qid'
])
qid = None
if "qid" in example._fields:
qid = example.qid
record = Record(
token_ids=token_ids,
text_type_ids=text_type_ids,
......@@ -285,6 +334,7 @@ class BaseReader(object):
if len(all_dev_batches) == dev_count:
for batch in all_dev_batches:
yield batch
all_dev_batches = []
def f():
for i in wrapper():
......@@ -368,13 +418,6 @@ class MaskLMReader(BaseReader):
token_ids = tokenizer.convert_tokens_to_ids(tokens)
position_ids = list(range(len(token_ids)))
# Record = namedtuple('Record',
# ['token_ids', 'text_type_ids', 'position_ids'])
# record = Record(
# token_ids=token_ids,
# text_type_ids=text_type_ids,
# position_ids=position_ids)
return [token_ids, text_type_ids, position_ids]
def batch_reader(self, examples, batch_size, in_tokens, phase):
......@@ -457,7 +500,6 @@ class ClassifyReader(BaseReader):
index for index, h in enumerate(headers) if h != "label"
]
Example = namedtuple('Example', headers)
examples = []
for line in reader:
for index, text in enumerate(line):
......@@ -474,8 +516,13 @@ class ClassifyReader(BaseReader):
batch_token_ids = [record.token_ids for record in batch_records]
batch_text_type_ids = [record.text_type_ids for record in batch_records]
batch_position_ids = [record.position_ids for record in batch_records]
if self.phase=='train' and self.learning_strategy == 'pairwise':
batch_token_ids_neg = [record.token_ids_neg for record in batch_records]
batch_text_type_ids_neg = [record.text_type_ids_neg for record in batch_records]
batch_position_ids_neg = [record.position_ids_neg for record in batch_records]
if not self.is_inference:
if not self.learning_strategy == 'pairwise':
batch_labels = [record.label_id for record in batch_records]
if self.is_classify:
batch_labels = np.array(batch_labels).astype("int64").reshape(
......@@ -505,8 +552,23 @@ class ClassifyReader(BaseReader):
padded_token_ids, padded_text_type_ids, padded_position_ids,
padded_task_ids, input_mask
]
if not self.is_inference:
return_list += [batch_labels, batch_qids]
if self.phase=='train':
if self.learning_strategy == 'pairwise':
padded_token_ids_neg, input_mask_neg = pad_batch_data(
batch_token_ids_neg, pad_idx=self.pad_id, return_input_mask=True)
padded_text_type_ids_neg = pad_batch_data(
batch_text_type_ids_neg, pad_idx=self.pad_id)
padded_position_ids_neg = pad_batch_data(
batch_position_ids_neg, pad_idx=self.pad_id)
padded_task_ids_neg = np.ones_like(
padded_token_ids_neg, dtype="int64") * self.task_id
return_list += [padded_token_ids_neg, padded_text_type_ids_neg, \
padded_position_ids_neg, padded_task_ids_neg, input_mask_neg]
elif self.learning_strategy == 'pointwise':
return_list += [batch_labels]
return return_list
......
......@@ -18,6 +18,19 @@ from paddle.fluid import layers
from paddlepalm.interface import task_paradigm
import numpy as np
import os
import json
def computeHingeLoss(pos, neg, margin):
loss_part1 = fluid.layers.elementwise_sub(
fluid.layers.fill_constant_batch_size_like(
input=pos, shape=[-1, 1], value=margin, dtype='float32'), pos)
loss_part2 = fluid.layers.elementwise_add(loss_part1, neg)
loss_part3 = fluid.layers.elementwise_max(
fluid.layers.fill_constant_batch_size_like(
input=loss_part2, shape=[-1, 1], value=0.0, dtype='float32'), loss_part2)
return loss_part3
class TaskParadigm(task_paradigm):
'''
......@@ -26,12 +39,25 @@ class TaskParadigm(task_paradigm):
def __init__(self, config, phase, backbone_config=None):
self._is_training = phase == 'train'
self._hidden_size = backbone_config['hidden_size']
self._batch_size = config['batch_size']
self._num_classes = config.get('num_classes', 2)
if 'learning_strategy' in config:
self._learning_strategy = config['learning_strategy']
else:
self._learning_strategy = 'pointwise'
if 'margin' in config:
self._margin = config['margin']
else:
self._margin = 0.5
if 'initializer_range' in config:
self._param_initializer = config['initializer_range']
else:
self._param_initializer = fluid.initializer.TruncatedNormal(
scale=backbone_config.get('initializer_range', 0.02))
if 'dropout_prob' in config:
self._dropout_prob = config['dropout_prob']
else:
......@@ -39,15 +65,19 @@ class TaskParadigm(task_paradigm):
self._pred_output_path = config.get('pred_output_path', None)
self._preds = []
self._preds_logits = []
@property
def inputs_attrs(self):
if self._is_training:
reader = {"label_ids": [[-1], 'int64']}
else:
reader = {}
bb = {"sentence_pair_embedding": [[-1, self._hidden_size], 'float32']}
if self._is_training:
if self._learning_strategy == 'pointwise':
reader["label_ids"] = [[-1], 'int64']
elif self._learning_strategy == 'pairwise':
bb["sentence_pair_embedding_neg"] = [[-1, self._hidden_size], 'float32']
return {'reader': reader, 'backbone': bb}
@property
......@@ -55,43 +85,96 @@ class TaskParadigm(task_paradigm):
if self._is_training:
return {"loss": [[1], 'float32']}
else:
return {"logits": [[-1, 2], 'float32']}
if self._learning_strategy=='paiwise':
return {"probs": [[-1, 1], 'float32']}
else:
return {"logits": [[-1, 2], 'float32'],
"probs": [[-1, 2], 'float32']}
def build(self, inputs, scope_name=""):
if self._is_training:
labels = inputs["reader"]["label_ids"]
cls_feats = inputs["backbone"]["sentence_pair_embedding"]
# inputs
cls_feats = inputs["backbone"]["sentence_pair_embedding"]
if self._is_training:
cls_feats = fluid.layers.dropout(
x=cls_feats,
dropout_prob=self._dropout_prob,
dropout_implementation="upscale_in_train")
if self._learning_strategy == 'pairwise':
cls_feats_neg = inputs["backbone"]["sentence_pair_embedding_neg"]
cls_feats_neg = fluid.layers.dropout(
x=cls_feats_neg,
dropout_prob=self._dropout_prob,
dropout_implementation="upscale_in_train")
elif self._learning_strategy == 'pointwise':
labels = inputs["reader"]["label_ids"]
# loss
# for pointwise
if self._learning_strategy == 'pointwise':
logits = fluid.layers.fc(
input=cls_feats,
size=2,
size=self._num_classes,
param_attr=fluid.ParamAttr(
name=scope_name+"cls_out_w",
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(
name=scope_name+"cls_out_b",
initializer=fluid.initializer.Constant(0.)))
probs = fluid.layers.softmax(logits)
if self._is_training:
inputs = fluid.layers.softmax(logits)
ce_loss = fluid.layers.cross_entropy(
input=inputs, label=labels)
input=probs, label=labels)
loss = fluid.layers.mean(x=ce_loss)
return {'loss': loss}
# for pred
else:
return {'logits': logits}
return {'logits': logits,
'probs': probs}
# for pairwise
elif self._learning_strategy == 'pairwise':
pos_score = fluid.layers.fc(
input=cls_feats,
size=1,
act = "sigmoid",
param_attr=fluid.ParamAttr(
name=scope_name+"cls_out_w_pr",
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(
name=scope_name+"cls_out_b_pr",
initializer=fluid.initializer.Constant(0.)))
pos_score = fluid.layers.reshape(x=pos_score, shape=[-1, 1], inplace=True)
if self._is_training:
neg_score = fluid.layers.fc(
input=cls_feats_neg,
size=1,
act = "sigmoid",
param_attr=fluid.ParamAttr(
name=scope_name+"cls_out_w_pr",
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(
name=scope_name+"cls_out_b_pr",
initializer=fluid.initializer.Constant(0.)))
neg_score = fluid.layers.reshape(x=neg_score, shape=[-1, 1], inplace=True)
loss = fluid.layers.mean(computeHingeLoss(pos_score, neg_score, self._margin))
return {'loss': loss}
# for pred
else:
return {'probs': pos_score}
def postprocess(self, rt_outputs):
if not self._is_training:
probs = []
logits = []
probs = rt_outputs['probs']
self._preds.extend(probs.tolist())
if self._learning_strategy == 'pointwise':
logits = rt_outputs['logits']
preds = np.argmax(logits, -1)
self._preds.extend(preds.tolist())
self._preds_logits.extend(logits.tolist())
def epoch_postprocess(self, post_inputs):
# there is no post_inputs needed and not declared in epoch_inputs_attrs, hence no elements exist in post_inputs
......@@ -99,8 +182,13 @@ class TaskParadigm(task_paradigm):
if self._pred_output_path is None:
raise ValueError('argument pred_output_path not found in config. Please add it into config dict/file.')
with open(os.path.join(self._pred_output_path, 'predictions.json'), 'w') as writer:
for p in self._preds:
writer.write(str(p)+'\n')
for i in range(len(self._preds)):
if self._learning_strategy == 'pointwise':
label = 0 if self._preds[i][0] > self._preds[i][1] else 1
result = {'index': i, 'label': label, 'logits': self._preds_logits[i], 'probs': self._preds[i]}
elif self._learning_strategy == 'pairwise':
label = 0 if self._preds[i][0] < 0.5 else 1
result = {'index': i, 'label': label, 'probs': self._preds[i][0]}
result = json.dumps(result)
writer.write(result+'\n')
print('Predictions saved at '+os.path.join(self._pred_output_path, 'predictions.json'))
\ No newline at end of file
......@@ -23,12 +23,14 @@ from paddle import fluid
def _check_and_adapt_shape_dtype(rt_val, attr, message=""):
if not isinstance(rt_val, np.ndarray):
rt_val = np.array(rt_val)
assert rt_val.dtype != np.dtype('O'), "yielded data is not a valid tensor(number of elements on some dimension may differ)."
if rt_val.dtype == np.dtype('float64'):
rt_val = rt_val.astype('float32')
shape, dtype = attr
assert rt_val.dtype == np.dtype(dtype), message+"yielded data type not consistent with attr settings. Expect: {}, receive: {}.".format(rt_val.dtype, np.dtype(dtype))
assert len(shape) == rt_val.ndim, message+"yielded data rank(ndim) not consistent with attr settings. Expect: {}, receive: {}.".format(len(shape), rt_val.ndim)
for rt, exp in zip(rt_val.shape, shape):
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册