提交 c62c97af 编写于 作者: X xixiaoyao

add cls api

上级 f9e37ecd
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""v1.1
BERT model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from paddle import fluid
from paddle.fluid import layers
from paddlepalm.backbone.utils.transformer import pre_process_layer, encoder
from paddlepalm.interface import backbone
class Model(backbone):
def __init__(self, config, phase):
# self._is_training = phase == 'train' # backbone一般不用关心运行阶段,因为outputs在任何阶段基本不会变
self._emb_size = config["hidden_size"]
self._n_layer = config["num_hidden_layers"]
self._n_head = config["num_attention_heads"]
self._voc_size = config["vocab_size"]
self._max_position_seq_len = config["max_position_embeddings"]
self._sent_types = config["type_vocab_size"]
self._hidden_act = config["hidden_act"]
self._prepostprocess_dropout = config["hidden_dropout_prob"]
self._attention_dropout = config["attention_probs_dropout_prob"]
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(
scale=config["initializer_range"])
@property
def inputs_attr(self):
return {"token_ids": [[-1, -1, 1], 'int64'],
"position_ids": [[-1, -1, 1], 'int64'],
"segment_ids": [[-1, -1, 1], 'int64'],
"input_mask": [[-1, -1, 1], 'float32']}
@property
def outputs_attr(self):
return {"word_embedding": [[-1, -1, self._emb_size], 'float32'],
"embedding_table": [[-1, self._voc_size, self._emb_size], 'float32'],
"encoder_outputs": [[-1, -1, self._emb_size], 'float32'],
"sentence_embedding": [[-1, self._emb_size], 'float32'],
"sentence_pair_embedding": [[-1, self._emb_size], 'float32']}
def build(self, inputs, scope_name=""):
src_ids = inputs['token_ids']
pos_ids = inputs['position_ids']
sent_ids = inputs['segment_ids']
input_mask = inputs['input_mask']
self._emb_dtype = 'float32'
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(
input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(
name=scope_name+self._word_emb_name, initializer=self._param_initializer),
is_sparse=False)
# fluid.global_scope().find_var('backbone-word_embedding').get_tensor()
embedding_table = fluid.default_main_program().global_block().var(scope_name+self._word_emb_name)
position_emb_out = fluid.layers.embedding(
input=pos_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(
name=scope_name+self._pos_emb_name, initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(
sent_ids,
size=[self._sent_types, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(
name=scope_name+self._sent_emb_name, initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
emb_out = pre_process_layer(
emb_out, 'nd', self._prepostprocess_dropout, name=scope_name+'pre_encoder')
self_attn_mask = fluid.layers.matmul(
x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(
x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(
x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
enc_out = encoder(
enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name=scope_name+'encoder')
next_sent_feat = fluid.layers.slice(
input=enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.reshape(next_sent_feat, [-1, next_sent_feat.shape[-1]])
next_sent_feat = fluid.layers.fc(
input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(
name=scope_name+"pooled_fc.w_0", initializer=self._param_initializer),
bias_attr=scope_name+"pooled_fc.b_0")
return {'embedding_table': embedding_table,
'word_embedding': emb_out,
'encoder_outputs': enc_out,
'sentence_embedding': next_sent_feat,
'sentence_pair_embedding': next_sent_feat}
def postprocess(self, rt_outputs):
pass
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Ernie model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
from paddle import fluid
from paddle.fluid import layers
from paddlepalm.backbone.utils.transformer import pre_process_layer, encoder
from paddlepalm.interface import backbone
class Model(backbone):
def __init__(self,
config,
phase):
# self._is_training = phase == 'train' # backbone一般不用关心运行阶段,因为outputs在任何阶段基本不会变
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
if config['sent_type_vocab_size']:
self._sent_types = config['sent_type_vocab_size']
else:
self._sent_types = config['type_vocab_size']
self._task_types = config['task_type_vocab_size']
self._hidden_act = config['hidden_act']
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._word_emb_name = "word_embedding"
self._pos_emb_name = "pos_embedding"
self._sent_emb_name = "sent_embedding"
self._task_emb_name = "task_embedding"
self._emb_dtype = "float32"
self._param_initializer = fluid.initializer.TruncatedNormal(
scale=config['initializer_range'])
@property
def inputs_attr(self):
return {"token_ids": [[-1, -1, 1], 'int64'],
"position_ids": [[-1, -1, 1], 'int64'],
"segment_ids": [[-1, -1, 1], 'int64'],
"input_mask": [[-1, -1, 1], 'float32'],
"task_ids": [[-1,-1, 1], 'int64']}
@property
def outputs_attr(self):
return {"word_embedding": [[-1, -1, self._emb_size], 'float32'],
"embedding_table": [[-1, self._voc_size, self._emb_size], 'float32'],
"encoder_outputs": [[-1, -1, self._emb_size], 'float32'],
"sentence_embedding": [[-1, self._emb_size], 'float32'],
"sentence_pair_embedding": [[-1, self._emb_size], 'float32']}
def build(self, inputs, scope_name=""):
src_ids = inputs['token_ids']
pos_ids = inputs['position_ids']
sent_ids = inputs['segment_ids']
input_mask = inputs['input_mask']
task_ids = inputs['task_ids']
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(
input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(
name=scope_name+self._word_emb_name, initializer=self._param_initializer),
is_sparse=False)
# fluid.global_scope().find_var('backbone-word_embedding').get_tensor()
embedding_table = fluid.default_main_program().global_block().var(scope_name+self._word_emb_name)
position_emb_out = fluid.layers.embedding(
input=pos_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(
name=scope_name+self._pos_emb_name, initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(
sent_ids,
size=[self._sent_types, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(
name=scope_name+self._sent_emb_name, initializer=self._param_initializer))
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
task_emb_out = fluid.layers.embedding(
task_ids,
size=[self._task_types, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(
name=scope_name+self._task_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + task_emb_out
emb_out = pre_process_layer(
emb_out, 'nd', self._prepostprocess_dropout, name=scope_name+'pre_encoder')
self_attn_mask = fluid.layers.matmul(
x=input_mask, y=input_mask, transpose_y=True)
self_attn_mask = fluid.layers.scale(
x=self_attn_mask, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = fluid.layers.stack(
x=[self_attn_mask] * self._n_head, axis=1)
n_head_self_attn_mask.stop_gradient = True
enc_out = encoder(
enc_input=emb_out,
attn_bias=n_head_self_attn_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd="",
postprocess_cmd="dan",
param_initializer=self._param_initializer,
name=scope_name+'encoder')
next_sent_feat = fluid.layers.slice(
input=enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.reshape(next_sent_feat, [-1, next_sent_feat.shape[-1]])
next_sent_feat = fluid.layers.fc(
input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(
name=scope_name+"pooled_fc.w_0", initializer=self._param_initializer),
bias_attr=scope_name+"pooled_fc.b_0")
return {'embedding_table': embedding_table,
'word_embedding': emb_out,
'encoder_outputs': enc_out,
'sentence_embedding': next_sent_feat,
'sentence_pair_embedding': next_sent_feat}
def postprocess(self, rt_outputs):
pass
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Transformer encoder."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from functools import partial
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.layer_helper import LayerHelper as LayerHelper
from functools import reduce # py3
def layer_norm(x, begin_norm_axis=1, epsilon=1e-6, param_attr=None, bias_attr=None):
helper = LayerHelper('layer_norm', **locals())
mean = layers.reduce_mean(x, dim=begin_norm_axis, keep_dim=True)
shift_x = layers.elementwise_sub(x=x, y=mean, axis=0)
variance = layers.reduce_mean(layers.square(shift_x), dim=begin_norm_axis, keep_dim=True)
r_stdev = layers.rsqrt(variance + epsilon)
norm_x = layers.elementwise_mul(x=shift_x, y=r_stdev, axis=0)
param_shape = [reduce(lambda x, y: x * y, norm_x.shape[begin_norm_axis:])]
param_dtype = norm_x.dtype
scale = helper.create_parameter(
attr=param_attr,
shape=param_shape,
dtype=param_dtype,
default_initializer=fluid.initializer.Constant(1.))
bias = helper.create_parameter(
attr=bias_attr,
shape=param_shape,
dtype=param_dtype,
is_bias=True,
default_initializer=fluid.initializer.Constant(0.))
out = layers.elementwise_mul(x=norm_x, y=scale, axis=-1)
out = layers.elementwise_add(x=out, y=bias, axis=-1)
return out
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
if not (len(queries.shape) == len(keys.shape) == len(values.shape) == 3):
raise ValueError(
"Inputs: quries, keys and values should all be 3-D tensors.")
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(
name=name + '_query_fc.w_0',
initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(
name=name + '_key_fc.w_0',
initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(
name=name + '_value_fc.w_0',
initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(
x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
return layers.reshape(
x=trans_x,
shape=[0, 0, trans_x.shape[2] * trans_x.shape[3]],
inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(
weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
return out
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat(
[layers.reshape(
cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat(
[layers.reshape(
cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads = scaled_dot_product_attention(q, k, v, attn_bias, d_key,
dropout_rate)
out = __combine_heads(ctx_multiheads)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(
name=name + '_output_fc.w_0',
initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out
def positionwise_feed_forward(x,
d_inner_hid,
d_hid,
dropout_rate,
hidden_act,
param_initializer=None,
name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=2,
act=hidden_act,
param_attr=fluid.ParamAttr(
name=name + '_fc_0.w_0',
initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(
hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(
name=name + '_fc_1.w_0', initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out, out, process_cmd, dropout_rate=0.,
name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layer_norm(
out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(
name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(
name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(
out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
attn_output = multi_head_attention(
pre_process_layer(
enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
attn_output = post_process_layer(
enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
ffd_output = positionwise_feed_forward(
pre_process_layer(
attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
return post_process_layer(
attn_output,
ffd_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_ffn')
def encoder(enc_input,
attn_bias,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
for i in range(n_layer):
enc_output = encoder_layer(
enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
enc_input = enc_output
enc_output = pre_process_layer(
enc_output, preprocess_cmd, prepostprocess_dropout, name="post_encoder")
return enc_output
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddlepalm.interface import reader
from paddlepalm.reader.utils.reader4ernie import ClassifyReader
def classify(data_path, vocab_path, batch_size, max_len, \
pred_batch_size=None, file_format='csv', tokenizer='wordpiece', \
lang='en', shuffle_train=True, seed=None, do_lower_case=False, \
seed=None, phase='train'):
assert lang.lower() in ['en', 'cn', 'english', 'chinese'], "supported language: en (English), cn (Chinese)."
assert phase in ['train', 'pred'], "supported phase: train, pred."
config = {
'train_file': data_path,
'pred_file': data_path,
'batch_size': batch_size,
'pred_batch_size': pred_batch_size,
'max_len': max_len,
'file_format': file_format,
'tokenizer': tokenizer,
'for_cn': lang.lower() == 'cn' or lang.lower() == 'chinese',
'shuffle_train': shuffle_train,
'do_lower_case': do_lower_case,
'seed': seed
}
if pred_batch_size is None:
del config['pred_batch_size']
return Reader(config, phase=phase)
class Reader(reader):
def __init__(self, config, phase='train', print_prefix=''):
"""
Args:
phase: train, eval, pred
"""
self._is_training = phase == 'train'
reader = ClassifyReader(config['vocab_path'],
max_seq_len=config['max_len'],
do_lower_case=config.get('do_lower_case', False),
for_cn=config.get('for_cn', False),
random_seed=config.get('seed', None))
self._reader = reader
self._batch_size = config['batch_size']
self._max_seq_len = config['max_len']
self._input_file = config['data_path']
if phase == 'train':
self._num_epochs = None # 防止iteartor终止
self._shuffle = config.get('shuffle_train', True)
# self._shuffle_buffer = config.get('shuffle_buffer', 5000)
elif phase == 'eval':
self._num_epochs = 1
self._shuffle = False
self._batch_size = config.get('pred_batch_size', self._batch_size)
elif phase == 'pred':
self._num_epochs = 1
self._shuffle = False
self._batch_size = config.get('pred_batch_size', self._batch_size)
self._phase = phase
# self._batch_size =
self._print_first_n = config.get('print_first_n', 0)
@property
def outputs_attr(self):
if self._is_training:
return {"token_ids": [[-1, -1], 'int64'],
"position_ids": [[-1, -1], 'int64'],
"segment_ids": [[-1, -1], 'int64'],
"input_mask": [[-1, -1, 1], 'float32'],
"label_ids": [[-1], 'int64'],
"task_ids": [[-1, -1], 'int64']
}
else:
return {"token_ids": [[-1, -1], 'int64'],
"position_ids": [[-1, -1], 'int64'],
"segment_ids": [[-1, -1], 'int64'],
"task_ids": [[-1, -1], 'int64'],
"input_mask": [[-1, -1, 1], 'float32']
}
def load_data(self):
self._data_generator = self._reader.data_generator(self._input_file, self._batch_size, self._num_epochs, shuffle=self._shuffle, phase=self._phase)
def iterator(self):
def list_to_dict(x):
names = ['token_ids', 'segment_ids', 'position_ids', 'task_ids', 'input_mask',
'label_ids', 'unique_ids']
outputs = {n: i for n,i in zip(names, x)}
del outputs['unique_ids']
if not self._is_training:
del outputs['label_ids']
return outputs
for batch in self._data_generator():
yield list_to_dict(batch)
def get_epoch_outputs(self):
return {'examples': self._reader.get_examples(self._phase),
'features': self._reader.get_features(self._phase)}
@property
def num_examples(self):
return self._reader.get_num_examples(phase=self._phase)
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddlepalm.interface import reader
from paddlepalm.reader.utils.reader4ernie import ClassifyReader
class Reader(reader):
def __init__(self, config, phase='train', dev_count=1, print_prefix=''):
"""
Args:
phase: train, eval, pred
"""
self._is_training = phase == 'train'
reader = ClassifyReader(config['vocab_path'],
max_seq_len=config['max_seq_len'],
do_lower_case=config.get('do_lower_case', True),
for_cn=config.get('for_cn', False),
random_seed=config.get('seed', None))
self._reader = reader
self._dev_count = dev_count
self._batch_size = config['batch_size']
self._max_seq_len = config['max_seq_len']
if phase == 'train':
self._input_file = config['train_file']
self._num_epochs = None # 防止iteartor终止
self._shuffle = config.get('shuffle', True)
self._shuffle_buffer = config.get('shuffle_buffer', 5000)
elif phase == 'eval':
self._input_file = config['dev_file']
self._num_epochs = 1
self._shuffle = False
self._batch_size = config.get('pred_batch_size', self._batch_size)
elif phase == 'pred':
self._input_file = config['pred_file']
self._num_epochs = 1
self._shuffle = False
self._batch_size = config.get('pred_batch_size', self._batch_size)
self._phase = phase
# self._batch_size =
self._print_first_n = config.get('print_first_n', 1)
@property
def outputs_attr(self):
if self._is_training:
return {"token_ids": [[-1, -1], 'int64'],
"position_ids": [[-1, -1], 'int64'],
"segment_ids": [[-1, -1], 'int64'],
"input_mask": [[-1, -1, 1], 'float32'],
"label_ids": [[-1], 'int64'],
"task_ids": [[-1, -1], 'int64']
}
else:
return {"token_ids": [[-1, -1], 'int64'],
"position_ids": [[-1, -1], 'int64'],
"segment_ids": [[-1, -1], 'int64'],
"task_ids": [[-1, -1], 'int64'],
"input_mask": [[-1, -1, 1], 'float32']
}
def load_data(self):
self._data_generator = self._reader.data_generator(self._input_file, self._batch_size, self._num_epochs, dev_count=self._dev_count, shuffle=self._shuffle, phase=self._phase)
def iterator(self):
def list_to_dict(x):
names = ['token_ids', 'segment_ids', 'position_ids', 'task_ids', 'input_mask',
'label_ids', 'unique_ids']
outputs = {n: i for n,i in zip(names, x)}
del outputs['unique_ids']
if not self._is_training:
del outputs['label_ids']
return outputs
for batch in self._data_generator():
yield list_to_dict(batch)
@property
def num_examples(self):
return self._reader.get_num_examples(phase=self._phase)
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddlepalm.interface import reader
from paddlepalm.reader.utils.reader4ernie import MaskLMReader
import numpy as np
class Reader(reader):
def __init__(self, config, phase='train', dev_count=1, print_prefix=''):
"""
Args:
phase: train, eval, pred
"""
self._is_training = phase == 'train'
reader = MaskLMReader(config['vocab_path'],
max_seq_len=config['max_seq_len'],
do_lower_case=config.get('do_lower_case', False),
for_cn=config.get('for_cn', False),
random_seed=config.get('seed', None))
self._reader = reader
self._dev_count = dev_count
self._batch_size = config['batch_size']
self._max_seq_len = config['max_seq_len']
if phase == 'train':
self._input_file = config['train_file']
self._num_epochs = None # 防止iteartor终止
self._shuffle = config.get('shuffle', True)
self._shuffle_buffer = config.get('shuffle_buffer', 5000)
elif phase == 'eval':
self._input_file = config['dev_file']
self._num_epochs = 1
self._shuffle = False
self._batch_size = config.get('pred_batch_size', self._batch_size)
elif phase == 'pred':
self._input_file = config['pred_file']
self._num_epochs = 1
self._shuffle = False
self._batch_size = config.get('pred_batch_size', self._batch_size)
self._phase = phase
# self._batch_size =
self._print_first_n = config.get('print_first_n', 1)
@property
def outputs_attr(self):
return {"token_ids": [[-1, -1], 'int64'],
"position_ids": [[-1, -1], 'int64'],
"segment_ids": [[-1, -1], 'int64'],
"input_mask": [[-1, -1, 1], 'float32'],
"task_ids": [[-1, -1], 'int64'],
"mask_label": [[-1], 'int64'],
"mask_pos": [[-1], 'int64'],
}
def load_data(self):
self._data_generator = self._reader.data_generator(self._input_file, self._batch_size, self._num_epochs, dev_count=self._dev_count, shuffle=self._shuffle, phase=self._phase)
def iterator(self):
def list_to_dict(x):
names = ['token_ids', 'position_ids', 'segment_ids', 'input_mask',
'task_ids', 'mask_label', 'mask_pos']
outputs = {n: i for n,i in zip(names, x)}
# outputs['batchsize_x_seqlen'] = [self._batch_size * len(outputs['token_ids'][0]) - 1]
return outputs
for batch in self._data_generator():
# print(np.shape(list_to_dict(batch)['token_ids']))
# print(list_to_dict(batch)['mask_label'].tolist())
yield list_to_dict(batch)
def get_epoch_outputs(self):
return {'examples': self._reader.get_examples(self._phase),
'features': self._reader.get_features(self._phase)}
@property
def num_examples(self):
return self._reader.get_num_examples(phase=self._phase)
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from paddlepalm.interface import reader
from paddlepalm.reader.utils.reader4ernie import MRCReader
class Reader(reader):
def __init__(self, config, phase='train', dev_count=1, print_prefix=''):
"""
Args:
phase: train, eval, pred
"""
self._is_training = phase == 'train'
reader = MRCReader(config['vocab_path'],
max_seq_len=config['max_seq_len'],
do_lower_case=config.get('do_lower_case', False),
tokenizer='FullTokenizer',
for_cn=config.get('for_cn', False),
doc_stride=config['doc_stride'],
remove_noanswer=config.get('remove_noanswer', True),
max_query_length=config['max_query_len'],
random_seed=config.get('seed', None))
self._reader = reader
self._dev_count = dev_count
self._batch_size = config['batch_size']
self._max_seq_len = config['max_seq_len']
if phase == 'train':
self._input_file = config['train_file']
# self._num_epochs = config['num_epochs']
self._num_epochs = None # 防止iteartor终止
self._shuffle = config.get('shuffle', True)
self._shuffle_buffer = config.get('shuffle_buffer', 5000)
if phase == 'eval':
self._input_file = config['dev_file']
self._num_epochs = 1
self._shuffle = False
self._batch_size = config.get('pred_batch_size', self._batch_size)
elif phase == 'pred':
self._input_file = config['pred_file']
self._num_epochs = 1
self._shuffle = False
self._batch_size = config.get('pred_batch_size', self._batch_size)
self._phase = phase
# self._batch_size =
self._print_first_n = config.get('print_first_n', 1)
# TODO: without slide window version
self._with_slide_window = config.get('with_slide_window', False)
@property
def outputs_attr(self):
if self._is_training:
return {"token_ids": [[-1, -1], 'int64'],
"position_ids": [[-1, -1], 'int64'],
"segment_ids": [[-1, -1], 'int64'],
"input_mask": [[-1, -1, 1], 'float32'],
"start_positions": [[-1], 'int64'],
"end_positions": [[-1], 'int64'],
"task_ids": [[-1, -1], 'int64']
}
else:
return {"token_ids": [[-1, -1], 'int64'],
"position_ids": [[-1, -1], 'int64'],
"segment_ids": [[-1, -1], 'int64'],
"task_ids": [[-1, -1], 'int64'],
"input_mask": [[-1, -1, 1], 'float32'],
"unique_ids": [[-1], 'int64']
}
@property
def epoch_outputs_attr(self):
if not self._is_training:
return {"examples": None,
"features": None}
def load_data(self):
self._data_generator = self._reader.data_generator(self._input_file, self._batch_size, self._num_epochs, dev_count=self._dev_count, shuffle=self._shuffle, phase=self._phase)
def iterator(self):
def list_to_dict(x):
names = ['token_ids', 'segment_ids', 'position_ids', 'task_ids', 'input_mask',
'start_positions', 'end_positions', 'unique_ids']
outputs = {n: i for n,i in zip(names, x)}
if self._is_training:
del outputs['unique_ids']
else:
del outputs['start_positions']
del outputs['end_positions']
return outputs
for batch in self._data_generator():
yield list_to_dict(batch)
def get_epoch_outputs(self):
return {'examples': self._reader.get_examples(self._phase),
'features': self._reader.get_features(self._phase)}
@property
def num_examples(self):
return self._reader.get_num_examples(phase=self._phase)
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mask, padding and batching."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
def mask(batch_tokens, total_token_num, vocab_size, CLS=1, SEP=2, MASK=3):
"""
Add mask for batch_tokens, return out, mask_label, mask_pos;
Note: mask_pos responding the batch_tokens after padded;
"""
max_len = max([len(sent) for sent in batch_tokens])
mask_label = []
mask_pos = []
prob_mask = np.random.rand(total_token_num)
# Note: the first token is [CLS], so [low=1]
replace_ids = np.random.randint(1, high=vocab_size, size=total_token_num)
pre_sent_len = 0
prob_index = 0
for sent_index, sent in enumerate(batch_tokens):
mask_flag = False
prob_index += pre_sent_len
for token_index, token in enumerate(sent):
prob = prob_mask[prob_index + token_index]
if prob > 0.15:
continue
elif 0.03 < prob <= 0.15:
# mask
if token != SEP and token != CLS:
mask_label.append(sent[token_index])
sent[token_index] = MASK
mask_flag = True
mask_pos.append(sent_index * max_len + token_index)
elif 0.015 < prob <= 0.03:
# random replace
if token != SEP and token != CLS:
mask_label.append(sent[token_index])
sent[token_index] = replace_ids[prob_index + token_index]
mask_flag = True
mask_pos.append(sent_index * max_len + token_index)
else:
# keep the original token
if token != SEP and token != CLS:
mask_label.append(sent[token_index])
mask_pos.append(sent_index * max_len + token_index)
pre_sent_len = len(sent)
# ensure at least mask one word in a sentence
while not mask_flag:
token_index = int(np.random.randint(1, high=len(sent) - 1, size=1))
if sent[token_index] != SEP and sent[token_index] != CLS:
mask_label.append(sent[token_index])
sent[token_index] = MASK
mask_flag = True
mask_pos.append(sent_index * max_len + token_index)
mask_label = np.array(mask_label).astype("int64").reshape([-1])
mask_pos = np.array(mask_pos).astype("int64").reshape([-1])
return batch_tokens, mask_label, mask_pos
def prepare_batch_data(insts,
total_token_num,
max_len=None,
voc_size=0,
pad_id=None,
cls_id=None,
sep_id=None,
mask_id=None,
return_input_mask=True,
return_max_len=True,
return_num_token=False):
"""
1. generate Tensor of data
2. generate Tensor of position
3. generate self attention mask, [shape: batch_size * max_len * max_len]
"""
batch_src_ids = [inst[0] for inst in insts]
batch_sent_ids = [inst[1] for inst in insts]
batch_pos_ids = [inst[2] for inst in insts]
labels_list = []
# compatible with mrqa, whose example includes start/end positions,
# or unique id
for i in range(3, len(insts[0]), 1):
labels = [inst[i] for inst in insts]
labels = np.array(labels).astype("int64").reshape([-1])
labels_list.append(labels)
# First step: do mask without padding
if mask_id >= 0:
out, mask_label, mask_pos = mask(
batch_src_ids,
total_token_num,
vocab_size=voc_size,
CLS=cls_id,
SEP=sep_id,
MASK=mask_id)
else:
out = batch_src_ids
# Second step: padding
src_id, self_input_mask = pad_batch_data(
out,
max_len=max_len,
pad_idx=pad_id, return_input_mask=True)
pos_id = pad_batch_data(
batch_pos_ids,
max_len=max_len,
pad_idx=pad_id,
return_pos=False,
return_input_mask=False)
sent_id = pad_batch_data(
batch_sent_ids,
max_len=max_len,
pad_idx=pad_id,
return_pos=False,
return_input_mask=False)
if mask_id >= 0:
return_list = [
src_id, pos_id, sent_id, self_input_mask, mask_label, mask_pos
] + labels_list
else:
return_list = [src_id, pos_id, sent_id, self_input_mask] + labels_list
return return_list if len(return_list) > 1 else return_list[0]
def pad_batch_data(insts,
max_len=None,
pad_idx=0,
return_pos=False,
return_input_mask=False,
return_max_len=False,
return_num_token=False):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and input mask.
"""
return_list = []
if max_len is None:
max_len = max(len(inst) for inst in insts)
# Any token included in dict can be used to pad, since the paddings' loss
# will be masked out by weights and make no effect on parameter gradients.
inst_data = np.array([
list(inst) + list([pad_idx] * (max_len - len(inst))) for inst in insts
])
return_list += [inst_data.astype("int64").reshape([-1, max_len])]
# position data
if return_pos:
inst_pos = np.array([
list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst))
for inst in insts
])
return_list += [inst_pos.astype("int64").reshape([-1, max_len])]
if return_input_mask:
# This is used to avoid attention on paddings.
input_mask_data = np.array([[1] * len(inst) + [0] *
(max_len - len(inst)) for inst in insts])
input_mask_data = np.expand_dims(input_mask_data, axis=-1)
return_list += [input_mask_data.astype("float32")]
if return_max_len:
return_list += [max_len]
if return_num_token:
num_token = 0
for inst in insts:
num_token += len(inst)
return_list += [num_token]
return return_list if len(return_list) > 1 else return_list[0]
if __name__ == "__main__":
pass
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mask, padding and batching."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
from six.moves import xrange
def mask(batch_tokens,
seg_labels,
mask_word_tags,
total_token_num,
vocab_size,
CLS=1,
SEP=2,
MASK=3):
"""
Add mask for batch_tokens, return out, mask_label, mask_pos;
Note: mask_pos responding the batch_tokens after padded;
"""
max_len = max([len(sent) for sent in batch_tokens])
mask_label = []
mask_pos = []
prob_mask = np.random.rand(total_token_num)
# Note: the first token is [CLS], so [low=1]
replace_ids = np.random.randint(1, high=vocab_size, size=total_token_num)
pre_sent_len = 0
prob_index = 0
for sent_index, sent in enumerate(batch_tokens):
mask_flag = False
mask_word = mask_word_tags[sent_index]
prob_index += pre_sent_len
if mask_word:
beg = 0
for token_index, token in enumerate(sent):
seg_label = seg_labels[sent_index][token_index]
if seg_label == 1:
continue
if beg == 0:
if seg_label != -1:
beg = token_index
continue
prob = prob_mask[prob_index + beg]
if prob > 0.15:
pass
else:
for index in xrange(beg, token_index):
prob = prob_mask[prob_index + index]
base_prob = 1.0
if index == beg:
base_prob = 0.15
if base_prob * 0.2 < prob <= base_prob:
mask_label.append(sent[index])
sent[index] = MASK
mask_flag = True
mask_pos.append(sent_index * max_len + index)
elif base_prob * 0.1 < prob <= base_prob * 0.2:
mask_label.append(sent[index])
sent[index] = replace_ids[prob_index + index]
mask_flag = True
mask_pos.append(sent_index * max_len + index)
else:
mask_label.append(sent[index])
mask_pos.append(sent_index * max_len + index)
if seg_label == -1:
beg = 0
else:
beg = token_index
else:
for token_index, token in enumerate(sent):
prob = prob_mask[prob_index + token_index]
if prob > 0.15:
continue
elif 0.03 < prob <= 0.15:
# mask
if token != SEP and token != CLS:
mask_label.append(sent[token_index])
sent[token_index] = MASK
mask_flag = True
mask_pos.append(sent_index * max_len + token_index)
elif 0.015 < prob <= 0.03:
# random replace
if token != SEP and token != CLS:
mask_label.append(sent[token_index])
sent[token_index] = replace_ids[prob_index +
token_index]
mask_flag = True
mask_pos.append(sent_index * max_len + token_index)
else:
# keep the original token
if token != SEP and token != CLS:
mask_label.append(sent[token_index])
mask_pos.append(sent_index * max_len + token_index)
pre_sent_len = len(sent)
mask_label = np.array(mask_label).astype("int64").reshape([-1])
mask_pos = np.array(mask_pos).astype("int64").reshape([-1])
return batch_tokens, mask_label, mask_pos
def pad_batch_data(insts,
pad_idx=0,
return_pos=False,
return_input_mask=False,
return_max_len=False,
return_num_token=False,
return_seq_lens=False):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and attention bias.
"""
return_list = []
max_len = max(len(inst) for inst in insts)
# Any token included in dict can be used to pad, since the paddings' loss
# will be masked out by weights and make no effect on parameter gradients.
inst_data = np.array(
[inst + list([pad_idx] * (max_len - len(inst))) for inst in insts])
return_list += [inst_data.astype("int64").reshape([-1, max_len])]
# position data
if return_pos:
inst_pos = np.array([
list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst))
for inst in insts
])
return_list += [inst_pos.astype("int64").reshape([-1, max_len])]
if return_input_mask:
# This is used to avoid attention on paddings.
input_mask_data = np.array([[1] * len(inst) + [0] *
(max_len - len(inst)) for inst in insts])
input_mask_data = np.expand_dims(input_mask_data, axis=-1)
return_list += [input_mask_data.astype("float32")]
if return_max_len:
return_list += [max_len]
if return_num_token:
num_token = 0
for inst in insts:
num_token += len(inst)
return_list += [num_token]
if return_seq_lens:
seq_lens = np.array([len(inst) for inst in insts])
return_list += [seq_lens.astype("int64").reshape([-1])]
return return_list if len(return_list) > 1 else return_list[0]
if __name__ == "__main__":
pass
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Mask, padding and batching."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import numpy as np
def mask(batch_tokens, total_token_num, vocab_size, CLS=1, SEP=2, MASK=3):
"""
Add mask for batch_tokens, return out, mask_label, mask_pos;
Note: mask_pos responding the batch_tokens after padded;
"""
max_len = max([len(sent) for sent in batch_tokens])
mask_label = []
mask_pos = []
prob_mask = np.random.rand(total_token_num)
# Note: the first token is [CLS], so [low=1]
replace_ids = np.random.randint(1, high=vocab_size, size=total_token_num)
pre_sent_len = 0
prob_index = 0
for sent_index, sent in enumerate(batch_tokens):
mask_flag = False
prob_index += pre_sent_len
for token_index, token in enumerate(sent):
prob = prob_mask[prob_index + token_index]
if prob > 0.15:
continue
elif 0.03 < prob <= 0.15:
# mask
if token != SEP and token != CLS:
mask_label.append(sent[token_index])
sent[token_index] = MASK
mask_flag = True
mask_pos.append(sent_index * max_len + token_index)
elif 0.015 < prob <= 0.03:
# random replace
if token != SEP and token != CLS:
mask_label.append(sent[token_index])
sent[token_index] = replace_ids[prob_index + token_index]
mask_flag = True
mask_pos.append(sent_index * max_len + token_index)
else:
# keep the original token
if token != SEP and token != CLS:
mask_label.append(sent[token_index])
mask_pos.append(sent_index * max_len + token_index)
pre_sent_len = len(sent)
# ensure at least mask one word in a sentence
while not mask_flag:
token_index = int(np.random.randint(1, high=len(sent) - 1, size=1))
if sent[token_index] != SEP and sent[token_index] != CLS:
mask_label.append(sent[token_index])
sent[token_index] = MASK
mask_flag = True
mask_pos.append(sent_index * max_len + token_index)
mask_label = np.array(mask_label).astype("int64").reshape([-1])
mask_pos = np.array(mask_pos).astype("int64").reshape([-1])
return batch_tokens, mask_label, mask_pos
def prepare_batch_data(insts,
total_token_num,
max_len=None,
voc_size=0,
pad_id=None,
cls_id=None,
sep_id=None,
mask_id=None,
task_id=0,
return_input_mask=True,
return_max_len=True,
return_num_token=False):
"""
1. generate Tensor of data
2. generate Tensor of position
3. generate self attention mask, [shape: batch_size * max_len * max_len]
"""
batch_src_ids = [inst[0] for inst in insts]
batch_sent_ids = [inst[1] for inst in insts]
batch_pos_ids = [inst[2] for inst in insts]
# 这里是否应该反过来???否则在task layer里展开后的word embedding是padding后的,这时候word的index是跟没有padding时的index对不上的?
# First step: do mask without padding
out, mask_label, mask_pos = mask(
batch_src_ids,
total_token_num,
vocab_size=voc_size,
CLS=cls_id,
SEP=sep_id,
MASK=mask_id)
# Second step: padding
src_id, self_input_mask = pad_batch_data(
out,
max_len=max_len,
pad_idx=pad_id, return_input_mask=True)
pos_id = pad_batch_data(
batch_pos_ids,
max_len=max_len,
pad_idx=pad_id,
return_pos=False,
return_input_mask=False)
sent_id = pad_batch_data(
batch_sent_ids,
max_len=max_len,
pad_idx=pad_id,
return_pos=False,
return_input_mask=False)
task_ids = np.ones_like(
src_id, dtype="int64") * task_id
return_list = [
src_id, pos_id, sent_id, self_input_mask, task_ids, mask_label, mask_pos
]
return return_list if len(return_list) > 1 else return_list[0]
def pad_batch_data(insts,
max_len=None,
pad_idx=0,
return_pos=False,
return_input_mask=False,
return_max_len=False,
return_num_token=False):
"""
Pad the instances to the max sequence length in batch, and generate the
corresponding position data and input mask.
"""
return_list = []
if max_len is None:
max_len = max(len(inst) for inst in insts)
# Any token included in dict can be used to pad, since the paddings' loss
# will be masked out by weights and make no effect on parameter gradients.
inst_data = np.array([
list(inst) + list([pad_idx] * (max_len - len(inst))) for inst in insts
])
return_list += [inst_data.astype("int64").reshape([-1, max_len])]
# position data
if return_pos:
inst_pos = np.array([
list(range(0, len(inst))) + [pad_idx] * (max_len - len(inst))
for inst in insts
])
return_list += [inst_pos.astype("int64").reshape([-1, max_len])]
if return_input_mask:
# This is used to avoid attention on paddings.
input_mask_data = np.array([[1] * len(inst) + [0] *
(max_len - len(inst)) for inst in insts])
input_mask_data = np.expand_dims(input_mask_data, axis=-1)
return_list += [input_mask_data.astype("float32")]
if return_max_len:
return_list += [max_len]
if return_num_token:
num_token = 0
for inst in insts:
num_token += len(inst)
return_list += [num_token]
return return_list if len(return_list) > 1 else return_list[0]
if __name__ == "__main__":
pass
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
class MRQAExample(object):
"""A single training/test example for simple sequence classification.
For examples without an answer, the start and end position are -1.
"""
def __init__(self,
qas_id,
question_text,
doc_tokens,
orig_answer_text=None,
start_position=None,
end_position=None,
is_impossible=False):
self.qas_id = qas_id
self.question_text = question_text
self.doc_tokens = doc_tokens
self.orig_answer_text = orig_answer_text
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
def __str__(self):
return self.__repr__()
def __repr__(self):
s = ""
s += "qas_id: %s" % (tokenization.printable_text(self.qas_id))
s += ", question_text: %s" % (
tokenization.printable_text(self.question_text))
s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens))
if self.start_position:
s += ", start_position: %d" % (self.start_position)
if self.start_position:
s += ", end_position: %d" % (self.end_position)
if self.start_position:
s += ", is_impossible: %r" % (self.is_impossible)
return s
class MRQAFeature(object):
"""A single set of features of data."""
def __init__(self,
unique_id,
example_index,
doc_span_index,
tokens,
token_to_orig_map,
token_is_max_context,
input_ids,
input_mask,
segment_ids,
start_position=None,
end_position=None,
is_impossible=None):
self.unique_id = unique_id
self.example_index = example_index
self.doc_span_index = doc_span_index
self.tokens = tokens
self.token_to_orig_map = token_to_orig_map
self.token_is_max_context = token_is_max_context
self.input_ids = input_ids
self.input_mask = input_mask
self.segment_ids = segment_ids
self.start_position = start_position
self.end_position = end_position
self.is_impossible = is_impossible
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import sys
import os
import json
import random
import logging
import numpy as np
import six
from io import open
from collections import namedtuple
import paddlepalm.tokenizer.ernie_tokenizer as tokenization
from paddlepalm.reader.utils.batching4ernie import pad_batch_data
from paddlepalm.reader.utils.mlm_batching import prepare_batch_data
log = logging.getLogger(__name__)
if six.PY3:
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')
def csv_reader(fd, delimiter='\t'):
def gen():
for i in fd:
yield i.rstrip('\n').split(delimiter)
return gen()
class BaseReader(object):
def __init__(self,
vocab_path,
label_map_config=None,
max_seq_len=512,
do_lower_case=True,
in_tokens=False,
is_inference=False,
random_seed=None,
tokenizer="FullTokenizer",
is_classify=True,
is_regression=False,
for_cn=True,
task_id=0):
self.max_seq_len = max_seq_len
self.tokenizer = tokenization.FullTokenizer(
vocab_file=vocab_path, do_lower_case=do_lower_case)
self.vocab = self.tokenizer.vocab
self.pad_id = self.vocab["[PAD]"]
self.cls_id = self.vocab["[CLS]"]
self.sep_id = self.vocab["[SEP]"]
self.mask_id = self.vocab["[MASK]"]
self.in_tokens = in_tokens
self.is_inference = is_inference
self.for_cn = for_cn
self.task_id = task_id
np.random.seed(random_seed)
self.is_classify = is_classify
self.is_regression = is_regression
self.current_example = 0
self.current_epoch = 0
self.num_examples = 0
self.examples = {}
if label_map_config:
with open(label_map_config, encoding='utf8') as f:
self.label_map = json.load(f)
else:
self.label_map = None
def get_train_progress(self):
"""Gets progress for training phase."""
return self.current_example, self.current_epoch
def _read_tsv(self, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, 'r', encoding='utf8') as f:
reader = csv_reader(f)
headers = next(reader)
Example = namedtuple('Example', headers)
examples = []
for line in reader:
example = Example(*line)
examples.append(example)
return examples
def _truncate_seq_pair(self, tokens_a, tokens_b, max_length):
"""Truncates a sequence pair in place to the maximum length."""
# This is a simple heuristic which will always truncate the longer sequence
# one token at a time. This makes more sense than truncating an equal percent
# of tokens from each, since if one sequence is very short then each token
# that's truncated likely contains more information than a longer sequence.
while True:
total_length = len(tokens_a) + len(tokens_b)
if total_length <= max_length:
break
if len(tokens_a) > len(tokens_b):
tokens_a.pop()
else:
tokens_b.pop()
def _convert_example_to_record(self, example, max_seq_length, tokenizer):
"""Converts a single `Example` into a single `Record`."""
text_a = tokenization.convert_to_unicode(example.text_a)
tokens_a = tokenizer.tokenize(text_a)
tokens_b = None
has_text_b = False
if isinstance(example, dict):
has_text_b = "text_b" in example.keys()
else:
has_text_b = "text_b" in example._fields
if has_text_b:
text_b = tokenization.convert_to_unicode(example.text_b)
tokens_b = tokenizer.tokenize(text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
# The convention in BERT/ERNIE is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
text_type_ids = []
tokens.append("[CLS]")
text_type_ids.append(0)
for token in tokens_a:
tokens.append(token)
text_type_ids.append(0)
tokens.append("[SEP]")
text_type_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
text_type_ids.append(1)
tokens.append("[SEP]")
text_type_ids.append(1)
token_ids = tokenizer.convert_tokens_to_ids(tokens)
position_ids = list(range(len(token_ids)))
if self.is_inference:
Record = namedtuple('Record',
['token_ids', 'text_type_ids', 'position_ids'])
record = Record(
token_ids=token_ids,
text_type_ids=text_type_ids,
position_ids=position_ids)
else:
if self.label_map:
label_id = self.label_map[example.label]
else:
label_id = example.label
Record = namedtuple('Record', [
'token_ids', 'text_type_ids', 'position_ids', 'label_id', 'qid'
])
qid = None
if "qid" in example._fields:
qid = example.qid
record = Record(
token_ids=token_ids,
text_type_ids=text_type_ids,
position_ids=position_ids,
label_id=label_id,
qid=qid)
return record
def _prepare_batch_data(self, examples, batch_size, phase=None):
"""generate batch records"""
batch_records, max_len = [], 0
if len(examples) < batch_size:
raise Exception('CLS dataset contains too few samples. Expect more than '+str(batch_size))
for index, example in enumerate(examples):
if phase == "train":
self.current_example = index
record = self._convert_example_to_record(example, self.max_seq_len,
self.tokenizer)
max_len = max(max_len, len(record.token_ids))
if self.in_tokens:
to_append = (len(batch_records) + 1) * max_len <= batch_size
else:
to_append = len(batch_records) < batch_size
if to_append:
batch_records.append(record)
else:
yield self._pad_batch_records(batch_records)
batch_records, max_len = [record], len(record.token_ids)
if phase == 'pred' and batch_records:
yield self._pad_batch_records(batch_records)
def get_num_examples(self, input_file=None, phase=None):
if self.examples is not None:
if phase is None:
phase = 'all'
return len(self.examples[phase])
else:
assert input_file is not None, "Argument input_file should be given or the data_generator should be created when this func is called."
examples = self._read_tsv(input_file)
return len(examples)
def data_generator(self,
input_file,
batch_size,
epoch,
dev_count=1,
shuffle=True,
phase=None):
examples = self._read_tsv(input_file)
if phase is None:
phase = 'all'
self.examples[phase] = examples
def wrapper():
all_dev_batches = []
if epoch is None:
num_epochs = 99999999
else:
num_epochs = epoch
for epoch_index in range(num_epochs):
if phase == "train":
self.current_example = 0
self.current_epoch = epoch_index
if shuffle:
np.random.shuffle(examples)
for batch_data in self._prepare_batch_data(
examples, batch_size, phase=phase):
if len(all_dev_batches) < dev_count:
all_dev_batches.append(batch_data)
if len(all_dev_batches) == dev_count:
for batch in all_dev_batches:
yield batch
all_dev_batches = []
def f():
for i in wrapper():
yield i
# def f():
# try:
# for i in wrapper():
# yield i
# except Exception as e:
# import traceback
# traceback.print_exc()
return f
class MaskLMReader(BaseReader):
def _convert_example_to_record(self, example, max_seq_length, tokenizer):
"""Converts a single `Example` into a single `Record`."""
text_a = tokenization.convert_to_unicode(example.text_a)
tokens_a = tokenizer.tokenize(text_a)
tokens_b = None
has_text_b = False
if isinstance(example, dict):
has_text_b = "text_b" in example.keys()
else:
has_text_b = "text_b" in example._fields
if has_text_b:
text_b = tokenization.convert_to_unicode(example.text_b)
tokens_b = tokenizer.tokenize(text_b)
if tokens_b:
# Modifies `tokens_a` and `tokens_b` in place so that the total
# length is less than the specified length.
# Account for [CLS], [SEP], [SEP] with "- 3"
self._truncate_seq_pair(tokens_a, tokens_b, max_seq_length - 3)
else:
# Account for [CLS] and [SEP] with "- 2"
if len(tokens_a) > max_seq_length - 2:
tokens_a = tokens_a[0:(max_seq_length - 2)]
# The convention in BERT/ERNIE is:
# (a) For sequence pairs:
# tokens: [CLS] is this jack ##son ##ville ? [SEP] no it is not . [SEP]
# type_ids: 0 0 0 0 0 0 0 0 1 1 1 1 1 1
# (b) For single sequences:
# tokens: [CLS] the dog is hairy . [SEP]
# type_ids: 0 0 0 0 0 0 0
#
# Where "type_ids" are used to indicate whether this is the first
# sequence or the second sequence. The embedding vectors for `type=0` and
# `type=1` were learned during pre-training and are added to the wordpiece
# embedding vector (and position vector). This is not *strictly* necessary
# since the [SEP] token unambiguously separates the sequences, but it makes
# it easier for the model to learn the concept of sequences.
#
# For classification tasks, the first vector (corresponding to [CLS]) is
# used as as the "sentence vector". Note that this only makes sense because
# the entire model is fine-tuned.
tokens = []
text_type_ids = []
tokens.append("[CLS]")
text_type_ids.append(0)
for token in tokens_a:
tokens.append(token)
text_type_ids.append(0)
tokens.append("[SEP]")
text_type_ids.append(0)
if tokens_b:
for token in tokens_b:
tokens.append(token)
text_type_ids.append(1)
tokens.append("[SEP]")
text_type_ids.append(1)
token_ids = tokenizer.convert_tokens_to_ids(tokens)
position_ids = list(range(len(token_ids)))
# Record = namedtuple('Record',
# ['token_ids', 'text_type_ids', 'position_ids'])
# record = Record(
# token_ids=token_ids,
# text_type_ids=text_type_ids,
# position_ids=position_ids)
return [token_ids, text_type_ids, position_ids]
def batch_reader(self, examples, batch_size, in_tokens, phase):
batch = []
total_token_num = 0
if len(examples) < batch_size:
raise Exception('MaskLM dataset contains too few samples. Expect more than '+str(batch_size))
for e in examples:
parsed_line = self._convert_example_to_record(e, self.max_seq_len, self.tokenizer)
to_append = len(batch) < batch_size
if to_append:
batch.append(parsed_line)
total_token_num += len(parsed_line[0])
else:
yield batch, total_token_num
batch = [parsed_line]
total_token_num = len(parsed_line[0])
if len(batch) > 0 and phase == 'pred':
yield batch, total_token_num
def data_generator(self,
input_file,
batch_size,
epoch,
dev_count=1,
shuffle=True,
phase=None):
examples = self._read_tsv(input_file)
if phase is None:
phase = 'all'
self.examples[phase] = examples
def wrapper():
all_dev_batches = []
if epoch is None:
num_epochs = 99999999
else:
num_epochs = epoch
for epoch_index in range(num_epochs):
if phase == "train":
self.current_example = 0
self.current_epoch = epoch_index
if shuffle:
np.random.shuffle(examples)
all_dev_batches = []
for batch_data, num_tokens in self.batch_reader(examples,
batch_size, self.in_tokens, phase=phase):
batch_data = prepare_batch_data(
batch_data,
num_tokens,
voc_size=len(self.vocab),
pad_id=self.pad_id,
cls_id=self.cls_id,
sep_id=self.sep_id,
mask_id=self.mask_id,
# max_len=self.max_seq_len, # 注意,如果padding到最大长度,会导致mask_pos与实际位置不对应。因为mask pos是基于batch内最大长度来计算的。
return_input_mask=True,
return_max_len=False,
return_num_token=False)
if len(all_dev_batches) < dev_count:
all_dev_batches.append(batch_data)
if len(all_dev_batches) == dev_count:
for batch in all_dev_batches:
yield batch
all_dev_batches = []
return wrapper
class ClassifyReader(BaseReader):
def _read_tsv(self, input_file, quotechar=None):
"""Reads a tab separated value file."""
with open(input_file, 'r', encoding='utf8') as f:
reader = csv_reader(f)
headers = next(reader)
text_indices = [
index for index, h in enumerate(headers) if h != "label"
]
Example = namedtuple('Example', headers)
examples = []
for line in reader:
for index, text in enumerate(line):
if index in text_indices:
if self.for_cn:
line[index] = text.replace(' ', '')
else:
line[index] = text
example = Example(*line)
examples.append(example)
return examples
def _pad_batch_records(self, batch_records):
batch_token_ids = [record.token_ids for record in batch_records]
batch_text_type_ids = [record.text_type_ids for record in batch_records]
batch_position_ids = [record.position_ids for record in batch_records]
if not self.is_inference:
batch_labels = [record.label_id for record in batch_records]
if self.is_classify:
batch_labels = np.array(batch_labels).astype("int64").reshape(
[-1])
elif self.is_regression:
batch_labels = np.array(batch_labels).astype("float32").reshape(
[-1])
if batch_records[0].qid:
batch_qids = [record.qid for record in batch_records]
batch_qids = np.array(batch_qids).astype("int64").reshape(
[-1])
else:
batch_qids = np.array([]).astype("int64").reshape([-1])
# padding
padded_token_ids, input_mask = pad_batch_data(
batch_token_ids, pad_idx=self.pad_id, return_input_mask=True)
padded_text_type_ids = pad_batch_data(
batch_text_type_ids, pad_idx=self.pad_id)
padded_position_ids = pad_batch_data(
batch_position_ids, pad_idx=self.pad_id)
padded_task_ids = np.ones_like(
padded_token_ids, dtype="int64") * self.task_id
return_list = [
padded_token_ids, padded_text_type_ids, padded_position_ids,
padded_task_ids, input_mask
]
if not self.is_inference:
return_list += [batch_labels, batch_qids]
return return_list
class SequenceLabelReader(BaseReader):
def _pad_batch_records(self, batch_records):
batch_token_ids = [record.token_ids for record in batch_records]
batch_text_type_ids = [record.text_type_ids for record in batch_records]
batch_position_ids = [record.position_ids for record in batch_records]
batch_label_ids = [record.label_ids for record in batch_records]
# padding
padded_token_ids, input_mask, batch_seq_lens = pad_batch_data(
batch_token_ids,
pad_idx=self.pad_id,
return_input_mask=True,
return_seq_lens=True)
padded_text_type_ids = pad_batch_data(
batch_text_type_ids, pad_idx=self.pad_id)
padded_position_ids = pad_batch_data(
batch_position_ids, pad_idx=self.pad_id)
padded_label_ids = pad_batch_data(
batch_label_ids, pad_idx=len(self.label_map) - 1)
padded_task_ids = np.ones_like(
padded_token_ids, dtype="int64") * self.task_id
return_list = [
padded_token_ids, padded_text_type_ids, padded_position_ids,
padded_task_ids, input_mask, padded_label_ids, batch_seq_lens
]
return return_list
def _reseg_token_label(self, tokens, labels, tokenizer):
assert len(tokens) == len(labels)
ret_tokens = []
ret_labels = []
for token, label in zip(tokens, labels):
sub_token = tokenizer.tokenize(token)
if len(sub_token) == 0:
continue
ret_tokens.extend(sub_token)
if len(sub_token) == 1:
ret_labels.append(label)
continue
if label == "O" or label.startswith("I-"):
ret_labels.extend([label] * len(sub_token))
elif label.startswith("B-"):
i_label = "I-" + label[2:]
ret_labels.extend([label] + [i_label] * (len(sub_token) - 1))
elif label.startswith("S-"):
b_laebl = "B-" + label[2:]
e_label = "E-" + label[2:]
i_label = "I-" + label[2:]
ret_labels.extend([b_laebl] + [i_label] * (len(sub_token) - 2) + [e_label])
elif label.startswith("E-"):
i_label = "I-" + label[2:]
ret_labels.extend([i_label] * (len(sub_token) - 1) + [label])
assert len(ret_tokens) == len(ret_labels)
return ret_tokens, ret_labels
def _convert_example_to_record(self, example, max_seq_length, tokenizer):
tokens = tokenization.convert_to_unicode(example.text_a).split(u"")
labels = tokenization.convert_to_unicode(example.label).split(u"")
tokens, labels = self._reseg_token_label(tokens, labels, tokenizer)
if len(tokens) > max_seq_length - 2:
tokens = tokens[0:(max_seq_length - 2)]
labels = labels[0:(max_seq_length - 2)]
tokens = ["[CLS]"] + tokens + ["[SEP]"]
token_ids = tokenizer.convert_tokens_to_ids(tokens)
position_ids = list(range(len(token_ids)))
text_type_ids = [0] * len(token_ids)
no_entity_id = len(self.label_map) - 1
label_ids = [no_entity_id] + [
self.label_map[label] for label in labels
] + [no_entity_id]
Record = namedtuple(
'Record',
['token_ids', 'text_type_ids', 'position_ids', 'label_ids'])
record = Record(
token_ids=token_ids,
text_type_ids=text_type_ids,
position_ids=position_ids,
label_ids=label_ids)
return record
class ExtractEmbeddingReader(BaseReader):
def _pad_batch_records(self, batch_records):
batch_token_ids = [record.token_ids for record in batch_records]
batch_text_type_ids = [record.text_type_ids for record in batch_records]
batch_position_ids = [record.position_ids for record in batch_records]
# padding
padded_token_ids, input_mask, seq_lens = pad_batch_data(
batch_token_ids,
pad_idx=self.pad_id,
return_input_mask=True,
return_seq_lens=True)
padded_text_type_ids = pad_batch_data(
batch_text_type_ids, pad_idx=self.pad_id)
padded_position_ids = pad_batch_data(
batch_position_ids, pad_idx=self.pad_id)
padded_task_ids = np.ones_like(
padded_token_ids, dtype="int64") * self.task_id
return_list = [
padded_token_ids, padded_text_type_ids, padded_position_ids,
padded_task_ids, input_mask, seq_lens
]
return return_list
class MRCReader(BaseReader):
def __init__(self,
vocab_path,
label_map_config=None,
max_seq_len=512,
do_lower_case=True,
in_tokens=False,
random_seed=None,
tokenizer="FullTokenizer",
is_classify=True,
is_regression=False,
for_cn=True,
task_id=0,
doc_stride=128,
max_query_length=64,
remove_noanswer=True):
self.max_seq_len = max_seq_len
self.tokenizer = tokenization.FullTokenizer(
vocab_file=vocab_path, do_lower_case=do_lower_case)
self.vocab = self.tokenizer.vocab
self.pad_id = self.vocab["[PAD]"]
self.cls_id = self.vocab["[CLS]"]
self.sep_id = self.vocab["[SEP]"]
self.in_tokens = in_tokens
self.for_cn = for_cn
self.task_id = task_id
self.doc_stride = doc_stride
self.max_query_length = max_query_length
self.examples = {}
self.features = {}
self.remove_noanswer = remove_noanswer
if random_seed is not None:
np.random.seed(random_seed)
self.current_example = 0
self.current_epoch = 0
self.num_examples = 0
self.Example = namedtuple('Example',
['qas_id', 'question_text', 'doc_tokens', 'orig_answer_text',
'start_position', 'end_position'])
self.Feature = namedtuple("Feature", ["unique_id", "example_index", "doc_span_index",
"tokens", "token_to_orig_map", "token_is_max_context",
"token_ids", "position_ids", "text_type_ids",
"start_position", "end_position"])
self.DocSpan = namedtuple("DocSpan", ["start", "length"])
def _read_json(self, input_file, is_training):
examples = []
with open(input_file, "r", encoding='utf8') as f:
input_data = json.load(f)["data"]
for entry in input_data:
for paragraph in entry["paragraphs"]:
paragraph_text = paragraph["context"]
for qa in paragraph["qas"]:
qas_id = qa["id"]
question_text = qa["question"]
start_pos = None
end_pos = None
orig_answer_text = None
if is_training:
if len(qa["answers"]) != 1:
raise ValueError(
"For training, each question should have exactly 1 answer."
)
answer = qa["answers"][0]
orig_answer_text = answer["text"]
answer_offset = answer["answer_start"]
answer_length = len(orig_answer_text)
doc_tokens = [
paragraph_text[:answer_offset],
paragraph_text[answer_offset:answer_offset +
answer_length],
paragraph_text[answer_offset + answer_length:]
]
start_pos = 1
end_pos = 1
actual_text = " ".join(doc_tokens[start_pos:(end_pos
+ 1)])
if actual_text.find(orig_answer_text) == -1:
log.info("Could not find answer: '%s' vs. '%s'",
actual_text, orig_answer_text)
continue
else:
doc_tokens = tokenization.tokenize_chinese_chars(
paragraph_text)
example = self.Example(
qas_id=qas_id,
question_text=question_text,
doc_tokens=doc_tokens,
orig_answer_text=orig_answer_text,
start_position=start_pos,
end_position=end_pos)
examples.append(example)
return examples
def _improve_answer_span(self, doc_tokens, input_start, input_end,
tokenizer, orig_answer_text):
tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text))
for new_start in range(input_start, input_end + 1):
for new_end in range(input_end, new_start - 1, -1):
text_span = " ".join(doc_tokens[new_start:(new_end + 1)])
if text_span == tok_answer_text:
return (new_start, new_end)
return (input_start, input_end)
def _check_is_max_context(self, doc_spans, cur_span_index, position):
best_score = None
best_span_index = None
for (span_index, doc_span) in enumerate(doc_spans):
end = doc_span.start + doc_span.length - 1
if position < doc_span.start:
continue
if position > end:
continue
num_left_context = position - doc_span.start
num_right_context = end - position
score = min(num_left_context,
num_right_context) + 0.01 * doc_span.length
if best_score is None or score > best_score:
best_score = score
best_span_index = span_index
return cur_span_index == best_span_index
def _convert_example_to_feature(self, examples, max_seq_length, tokenizer,
is_training, remove_noanswer=True):
features = []
unique_id = 1000000000
print('converting examples to features...')
for (example_index, example) in enumerate(examples):
if example_index % 1000 == 0:
print('processing {}th example...'.format(example_index))
query_tokens = tokenizer.tokenize(example.question_text)
if len(query_tokens) > self.max_query_length:
query_tokens = query_tokens[0:self.max_query_length]
tok_to_orig_index = []
orig_to_tok_index = []
all_doc_tokens = []
for (i, token) in enumerate(example.doc_tokens):
orig_to_tok_index.append(len(all_doc_tokens))
sub_tokens = tokenizer.tokenize(token)
for sub_token in sub_tokens:
tok_to_orig_index.append(i)
all_doc_tokens.append(sub_token)
tok_start_position = None
tok_end_position = None
if is_training:
tok_start_position = orig_to_tok_index[example.start_position]
if example.end_position < len(example.doc_tokens) - 1:
tok_end_position = orig_to_tok_index[example.end_position +
1] - 1
else:
tok_end_position = len(all_doc_tokens) - 1
(tok_start_position,
tok_end_position) = self._improve_answer_span(
all_doc_tokens, tok_start_position, tok_end_position,
tokenizer, example.orig_answer_text)
max_tokens_for_doc = max_seq_length - len(query_tokens) - 3
doc_spans = []
start_offset = 0
while start_offset < len(all_doc_tokens):
length = len(all_doc_tokens) - start_offset
if length > max_tokens_for_doc:
length = max_tokens_for_doc
doc_spans.append(self.DocSpan(start=start_offset, length=length))
if start_offset + length == len(all_doc_tokens):
break
start_offset += min(length, self.doc_stride)
for (doc_span_index, doc_span) in enumerate(doc_spans):
tokens = []
token_to_orig_map = {}
token_is_max_context = {}
text_type_ids = []
tokens.append("[CLS]")
text_type_ids.append(0)
for token in query_tokens:
tokens.append(token)
text_type_ids.append(0)
tokens.append("[SEP]")
text_type_ids.append(0)
for i in range(doc_span.length):
split_token_index = doc_span.start + i
token_to_orig_map[len(tokens)] = tok_to_orig_index[
split_token_index]
is_max_context = self._check_is_max_context(
doc_spans, doc_span_index, split_token_index)
token_is_max_context[len(tokens)] = is_max_context
tokens.append(all_doc_tokens[split_token_index])
text_type_ids.append(1)
tokens.append("[SEP]")
text_type_ids.append(1)
token_ids = tokenizer.convert_tokens_to_ids(tokens)
position_ids = list(range(len(token_ids)))
start_position = None
end_position = None
if is_training:
doc_start = doc_span.start
doc_end = doc_span.start + doc_span.length - 1
out_of_span = False
if not (tok_start_position >= doc_start and
tok_end_position <= doc_end):
out_of_span = True
if out_of_span:
start_position = 0
end_position = 0
if remove_noanswer:
continue
else:
doc_offset = len(query_tokens) + 2
start_position = tok_start_position - doc_start + doc_offset
end_position = tok_end_position - doc_start + doc_offset
feature = self.Feature(
unique_id=unique_id,
example_index=example_index,
doc_span_index=doc_span_index,
tokens=tokens,
token_to_orig_map=token_to_orig_map,
token_is_max_context=token_is_max_context,
token_ids=token_ids,
position_ids=position_ids,
text_type_ids=text_type_ids,
start_position=start_position,
end_position=end_position)
features.append(feature)
unique_id += 1
return features
def _prepare_batch_data(self, records, batch_size, phase=None):
"""generate batch records"""
batch_records, max_len = [], 0
if len(records) < batch_size:
raise Exception('mrc dataset contains too few samples. Expect more than '+str(batch_size))
for index, record in enumerate(records):
if phase == "train":
self.current_example = index
max_len = max(max_len, len(record.token_ids))
if self.in_tokens:
to_append = (len(batch_records) + 1) * max_len <= batch_size
else:
to_append = len(batch_records) < batch_size
if to_append:
batch_records.append(record)
else:
yield self._pad_batch_records(batch_records, phase == "train")
batch_records, max_len = [record], len(record.token_ids)
if phase == 'pred' and batch_records:
yield self._pad_batch_records(batch_records, phase == "train")
def _pad_batch_records(self, batch_records, is_training):
batch_token_ids = [record.token_ids for record in batch_records]
batch_text_type_ids = [record.text_type_ids for record in batch_records]
batch_position_ids = [record.position_ids for record in batch_records]
if is_training:
batch_start_position = [
record.start_position for record in batch_records
]
batch_end_position = [
record.end_position for record in batch_records
]
batch_start_position = np.array(batch_start_position).astype(
"int64").reshape([-1])
batch_end_position = np.array(batch_end_position).astype(
"int64").reshape([-1])
else:
batch_size = len(batch_token_ids)
batch_start_position = np.zeros(
shape=[batch_size], dtype="int64")
batch_end_position = np.zeros(shape=[batch_size], dtype="int64")
batch_unique_ids = [record.unique_id for record in batch_records]
batch_unique_ids = np.array(batch_unique_ids).astype("int64").reshape(
[-1])
# padding
padded_token_ids, input_mask = pad_batch_data(
batch_token_ids, pad_idx=self.pad_id, return_input_mask=True)
padded_text_type_ids = pad_batch_data(
batch_text_type_ids, pad_idx=self.pad_id)
padded_position_ids = pad_batch_data(
batch_position_ids, pad_idx=self.pad_id)
padded_task_ids = np.ones_like(
padded_token_ids, dtype="int64") * self.task_id
return_list = [
padded_token_ids, padded_text_type_ids, padded_position_ids,
padded_task_ids, input_mask, batch_start_position,
batch_end_position, batch_unique_ids
]
return return_list
def get_num_examples(self, phase):
return len(self.features[phase])
def get_features(self, phase):
return self.features[phase]
def get_examples(self, phase):
return self.examples[phase]
def data_generator(self,
input_file,
batch_size,
epoch,
dev_count=1,
shuffle=True,
phase=None):
examples = self.examples.get(phase, None)
features = self.features.get(phase, None)
if not examples:
examples = self._read_json(input_file, phase == "train")
features = self._convert_example_to_feature(
examples, self.max_seq_len, self.tokenizer, phase == "train", remove_noanswer=self.remove_noanswer)
self.examples[phase] = examples
self.features[phase] = features
def wrapper():
all_dev_batches = []
if epoch is None:
num_epochs = 99999999
else:
num_epochs = epoch
for epoch_index in range(num_epochs):
if phase == "train":
self.current_example = 0
self.current_epoch = epoch_index
if phase == "train" and shuffle:
np.random.shuffle(features)
for batch_data in self._prepare_batch_data(
features, batch_size, phase=phase):
if len(all_dev_batches) < dev_count:
all_dev_batches.append(batch_data)
if len(all_dev_batches) == dev_count:
for batch in all_dev_batches:
yield batch
all_dev_batches = []
return wrapper
if __name__ == '__main__':
pass
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddle.fluid import layers
from paddlepalm.base_task import base_task
import numpy as np
import os
def classify(num_classes, input_dim, dropout_prob, pred_output_dir=None, param_initializer_range=0.02, phase='train'):
config = {
'num_classes': num_classes,
'hidden_size': input_dim,
'dropout_prob': dropout_prob,
'pred_output_dir': pred_output_dir,
'initializer_range': param_initializer_range
}
return Task(config, phase, config)
class Task(base_task):
'''
classification
'''
def __init__(self, config, phase, backbone_config=None):
self._is_training = phase == 'train'
self._hidden_size = backbone_config['hidden_size']
self.num_classes = config['num_classes']
if 'initializer_range' in config:
self._param_initializer = config['initializer_range']
else:
self._param_initializer = fluid.initializer.TruncatedNormal(
scale=backbone_config.get('initializer_range', 0.02))
if 'dropout_prob' in config:
self._dropout_prob = config['dropout_prob']
else:
self._dropout_prob = backbone_config.get('hidden_dropout_prob', 0.0)
self._pred_output_path = config.get('pred_output_dir', None)
self._preds = []
@property
def inputs_attrs(self):
if self._is_training:
reader = {"label_ids": [[-1], 'int64']}
else:
reader = {}
bb = {"sentence_embedding": [[-1, self._hidden_size], 'float32']}
return {'reader': reader, 'backbone': bb}
@property
def outputs_attrs(self):
if self._is_training:
return {'loss': [[1], 'float32']}
else:
return {'logits': [[-1, self.num_classes], 'float32']}
def build(self, inputs, scope_name=''):
sent_emb = inputs['backbone']['sentence_embedding']
if self._is_training:
label_ids = inputs['reader']['label_ids']
cls_feats = fluid.layers.dropout(
x=sent_emb,
dropout_prob=self._dropout_prob,
dropout_implementation="upscale_in_train")
logits = fluid.layers.fc(
input=sent_emb,
size=self.num_classes,
param_attr=fluid.ParamAttr(
name=scope_name+"cls_out_w",
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(
name=scope_name+"cls_out_b", initializer=fluid.initializer.Constant(0.)))
if self._is_training:
inputs = fluid.layers.softmax(logits)
loss = fluid.layers.cross_entropy(
input=inputs, label=label_ids)
loss = layers.mean(loss)
return {"loss": loss}
else:
return {"logits":logits}
def postprocess(self, rt_outputs):
if not self._is_training:
logits = rt_outputs['logits']
preds = np.argmax(logits, -1)
self._preds.extend(preds.tolist())
def epoch_postprocess(self, post_inputs):
# there is no post_inputs needed and not declared in epoch_inputs_attrs, hence no elements exist in post_inputs
if not self._is_training:
if self._pred_output_path is None:
raise ValueError('argument pred_output_path not found in config. Please add it into config dict/file.')
with open(os.path.join(self._pred_output_path, 'predictions.json'), 'w') as writer:
for p in self._preds:
writer.write(str(p)+'\n')
print('Predictions saved at '+os.path.join(self._pred_output_path, 'predictions.json'))
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddle.fluid import layers
from paddlepalm.interface import task_paradigm
import numpy as np
import os
class TaskParadigm(task_paradigm):
'''
matching
'''
def __init__(self, config, phase, backbone_config=None):
self._is_training = phase == 'train'
self._hidden_size = backbone_config['hidden_size']
if 'initializer_range' in config:
self._param_initializer = config['initializer_range']
else:
self._param_initializer = fluid.initializer.TruncatedNormal(
scale=backbone_config.get('initializer_range', 0.02))
if 'dropout_prob' in config:
self._dropout_prob = config['dropout_prob']
else:
self._dropout_prob = backbone_config.get('hidden_dropout_prob', 0.0)
self._pred_output_path = config.get('pred_output_path', None)
self._preds = []
@property
def inputs_attrs(self):
if self._is_training:
reader = {"label_ids": [[-1, 1], 'int64']}
else:
reader = {}
bb = {"sentence_pair_embedding": [[-1, self._hidden_size], 'float32']}
return {'reader': reader, 'backbone': bb}
@property
def outputs_attrs(self):
if self._is_training:
return {"loss": [[1], 'float32']}
else:
return {"logits": [[-1, 2], 'float32']}
def build(self, inputs, scope_name=""):
if self._is_training:
labels = inputs["reader"]["label_ids"]
cls_feats = inputs["backbone"]["sentence_pair_embedding"]
if self._is_training:
cls_feats = fluid.layers.dropout(
x=cls_feats,
dropout_prob=self._dropout_prob,
dropout_implementation="upscale_in_train")
logits = fluid.layers.fc(
input=cls_feats,
size=2,
param_attr=fluid.ParamAttr(
name=scope_name+"cls_out_w",
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(
name=scope_name+"cls_out_b",
initializer=fluid.initializer.Constant(0.)))
if self._is_training:
ce_loss, probs = fluid.layers.softmax_with_cross_entropy(
logits=logits, label=labels, return_softmax=True)
loss = fluid.layers.mean(x=ce_loss)
return {'loss': loss}
else:
return {'logits': logits}
def postprocess(self, rt_outputs):
if not self._is_training:
logits = rt_outputs['logits']
preds = np.argmax(logits, -1)
self._preds.extend(preds.tolist())
def epoch_postprocess(self, post_inputs):
# there is no post_inputs needed and not declared in epoch_inputs_attrs, hence no elements exist in post_inputs
if not self._is_training:
if self._pred_output_path is None:
raise ValueError('argument pred_output_path not found in config. Please add it into config dict/file.')
with open(os.path.join(self._pred_output_path, 'predictions.json'), 'w') as writer:
for p in self._preds:
writer.write(str(p)+'\n')
print('Predictions saved at '+os.path.join(self._pred_output_path, 'predictions.json'))
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddlepalm.interface import task_paradigm
from paddle.fluid import layers
from paddlepalm.backbone.utils.transformer import pre_process_layer
class TaskParadigm(task_paradigm):
'''
matching
'''
def __init__(self, config, phase, backbone_config=None):
self._is_training = phase == 'train'
self._emb_size = backbone_config['hidden_size']
self._hidden_size = backbone_config['hidden_size']
self._vocab_size = backbone_config['vocab_size']
self._hidden_act = backbone_config['hidden_act']
self._initializer_range = backbone_config['initializer_range']
@property
def inputs_attrs(self):
reader = {
"mask_label": [[-1, 1], 'int64'],
"mask_pos": [[-1, 1], 'int64']}
if not self._is_training:
del reader['mask_label']
del reader['batchsize_x_seqlen']
bb = {
"encoder_outputs": [[-1, -1, self._hidden_size], 'float32'],
"embedding_table": [[-1, self._vocab_size, self._emb_size], 'float32']}
return {'reader': reader, 'backbone': bb}
@property
def outputs_attrs(self):
if self._is_training:
return {"loss": [[1], 'float32']}
else:
return {"logits": [[-1], 'float32']}
def build(self, inputs, scope_name=""):
mask_pos = inputs["reader"]["mask_pos"]
if self._is_training:
mask_label = inputs["reader"]["mask_label"]
max_position = inputs["reader"]["batchsize_x_seqlen"] - 1
mask_pos = fluid.layers.elementwise_min(mask_pos, max_position)
mask_pos.stop_gradient = True
word_emb = inputs["backbone"]["embedding_table"]
enc_out = inputs["backbone"]["encoder_outputs"]
emb_size = word_emb.shape[-1]
_param_initializer = fluid.initializer.TruncatedNormal(
scale=self._initializer_range)
reshaped_emb_out = fluid.layers.reshape(
x=enc_out, shape=[-1, emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
# transform: fc
mask_trans_feat = fluid.layers.fc(
input=mask_feat,
size=emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(
name=scope_name+'mask_lm_trans_fc.w_0',
initializer=_param_initializer),
bias_attr=fluid.ParamAttr(name=scope_name+'mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = pre_process_layer(
mask_trans_feat, 'n', name=scope_name+'mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(
name=scope_name+"mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
fc_out = fluid.layers.matmul(
x=mask_trans_feat,
y=word_emb,
transpose_y=True)
fc_out += fluid.layers.create_parameter(
shape=[self._vocab_size],
dtype='float32',
attr=mask_lm_out_bias_attr,
is_bias=True)
if self._is_training:
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(
logits=fc_out, label=mask_label)
loss = fluid.layers.mean(mask_lm_loss)
return {'loss': loss}
else:
return {'logits': fc_out}
# -*- coding: UTF-8 -*-
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import paddle.fluid as fluid
from paddlepalm.interface import task_paradigm
import collections
import numpy as np
import os
import math
import six
import paddlepalm.tokenizer.ernie_tokenizer as tokenization
import json
RawResult = collections.namedtuple("RawResult",
["unique_id", "start_logits", "end_logits"])
class TaskParadigm(task_paradigm):
""""""
def __init__(self, config, phase, backbone_config=None):
self._is_training = phase == 'train'
self._max_sequence_length = config['max_seq_len']
self._hidden_size = backbone_config['hidden_size']
self._pred_results = []
if phase == 'pred':
self._max_answer_length = config.get('max_answer_len', None)
self._null_score_diff_threshold = config.get('null_score_diff_threshold', 0.0)
self._n_best_size = config.get('n_best_size', 20)
self._pred_output_path = config.get('pred_output_path', None)
self._verbose = config.get('verbose', False)
self._with_negative = config.get('with_negative', False)
self._do_lower_case = config.get('do_lower_case', False)
@property
def inputs_attrs(self):
if self._is_training:
reader = {"start_positions": [[-1, 1], 'int64'],
"end_positions": [[-1, 1], 'int64'],
}
else:
reader = {'unique_ids': [[-1, 1], 'int64']}
bb = {"encoder_outputs": [[-1, -1, self._hidden_size], 'float32']}
return {'reader': reader, 'backbone': bb}
@property
def epoch_inputs_attrs(self):
if not self._is_training:
from_reader = {'examples': None, 'features': None}
return {'reader': from_reader}
@property
def outputs_attr(self):
if self._is_training:
return {'loss': [[1], 'float32']}
else:
return {'start_logits': [[-1, -1, 1], 'float32'],
'end_logits': [[-1, -1, 1], 'float32'],
'unique_ids': [[-1, 1], 'int64']}
def build(self, inputs, scope_name=""):
if self._is_training:
start_positions = inputs['reader']['start_positions']
end_positions = inputs['reader']['end_positions']
max_position = inputs["reader"]["seqlen"] - 1
start_positions = fluid.layers.elementwise_min(start_positions, max_position)
end_positions = fluid.layers.elementwise_min(end_positions, max_position)
start_positions.stop_gradient = True
end_positions.stop_gradient = True
else:
unique_id = inputs['reader']['unique_ids']
enc_out = inputs['backbone']['encoder_outputs']
logits = fluid.layers.fc(
input=enc_out,
size=2,
num_flatten_dims=2,
param_attr=fluid.ParamAttr(
name=scope_name+"cls_squad_out_w",
initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
bias_attr=fluid.ParamAttr(
name=scope_name+"cls_squad_out_b", initializer=fluid.initializer.Constant(0.)))
logits = fluid.layers.transpose(x=logits, perm=[2, 0, 1])
start_logits, end_logits = fluid.layers.unstack(x=logits, axis=0)
def _compute_single_loss(logits, positions):
"""Compute start/end loss for mrc model"""
loss = fluid.layers.softmax_with_cross_entropy(
logits=logits, label=positions)
loss = fluid.layers.mean(x=loss)
return loss
if self._is_training:
start_loss = _compute_single_loss(start_logits, start_positions)
end_loss = _compute_single_loss(end_logits, end_positions)
total_loss = (start_loss + end_loss) / 2.0
return {'loss': total_loss}
else:
return {'start_logits': start_logits,
'end_logits': end_logits,
'unique_ids': unique_id}
def postprocess(self, rt_outputs):
"""this func will be called after each step(batch) of training/evaluating/predicting process."""
if not self._is_training:
unique_ids = np.squeeze(rt_outputs['unique_ids'], -1)
start_logits = rt_outputs['start_logits']
end_logits = rt_outputs['end_logits']
for idx in range(len(unique_ids)):
if unique_ids[idx] < 0:
continue
if len(self._pred_results) % 1000 == 0:
print("Predicting example: {}".format(len(self._pred_results)))
uid = int(unique_ids[idx])
s = [float(x) for x in start_logits[idx].flat]
e = [float(x) for x in end_logits[idx].flat]
self._pred_results.append(
RawResult(
unique_id=uid,
start_logits=s,
end_logits=e))
def epoch_postprocess(self, post_inputs):
"""(optional interface) this func will be called after evaluation/predicting process and each epoch during training process."""
if not self._is_training:
if self._pred_output_path is None:
raise ValueError('argument pred_output_path not found in config. Please add it into config dict/file.')
examples = post_inputs['reader']['examples']
features = post_inputs['reader']['features']
if not os.path.exists(self._pred_output_path):
os.makedirs(self._pred_output_path)
output_prediction_file = os.path.join(self._pred_output_path, "predictions.json")
output_nbest_file = os.path.join(self._pred_output_path, "nbest_predictions.json")
output_null_log_odds_file = os.path.join(self._pred_output_path, "null_odds.json")
_write_predictions(examples, features, self._pred_results,
self._n_best_size, self._max_answer_length,
self._do_lower_case, output_prediction_file,
output_nbest_file, output_null_log_odds_file,
self._with_negative,
self._null_score_diff_threshold, self._verbose)
def _write_predictions(all_examples, all_features, all_results, n_best_size,
max_answer_length, do_lower_case, output_prediction_file,
output_nbest_file, output_null_log_odds_file,
with_negative, null_score_diff_threshold,
verbose):
"""Write final predictions to the json file and log-odds of null if needed."""
print("Writing predictions to: %s" % (output_prediction_file))
print("Writing nbest to: %s" % (output_nbest_file))
example_index_to_features = collections.defaultdict(list)
for feature in all_features:
example_index_to_features[feature.example_index].append(feature)
unique_id_to_result = {}
for result in all_results:
unique_id_to_result[result.unique_id] = result
_PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name
"PrelimPrediction", [
"feature_index", "start_index", "end_index", "start_logit",
"end_logit"
])
all_predictions = collections.OrderedDict()
all_nbest_json = collections.OrderedDict()
scores_diff_json = collections.OrderedDict()
for (example_index, example) in enumerate(all_examples):
features = example_index_to_features[example_index]
prelim_predictions = []
# keep track of the minimum score of null start+end of position 0
score_null = 1000000 # large and positive
min_null_feature_index = 0 # the paragraph slice with min mull score
null_start_logit = 0 # the start logit at the slice with min null score
null_end_logit = 0 # the end logit at the slice with min null score
for (feature_index, feature) in enumerate(features):
result = unique_id_to_result[feature.unique_id]
start_indexes = _get_best_indexes(result.start_logits, n_best_size)
end_indexes = _get_best_indexes(result.end_logits, n_best_size)
# if we could have irrelevant answers, get the min score of irrelevant
if with_negative:
feature_null_score = result.start_logits[0] + result.end_logits[
0]
if feature_null_score < score_null:
score_null = feature_null_score
min_null_feature_index = feature_index
null_start_logit = result.start_logits[0]
null_end_logit = result.end_logits[0]
for start_index in start_indexes:
for end_index in end_indexes:
# We could hypothetically create invalid predictions, e.g., predict
# that the start of the span is in the question. We throw out all
# invalid predictions.
if start_index >= len(feature.tokens):
continue
if end_index >= len(feature.tokens):
continue
if start_index not in feature.token_to_orig_map:
continue
if end_index not in feature.token_to_orig_map:
continue
if not feature.token_is_max_context.get(start_index, False):
continue
if end_index < start_index:
continue
length = end_index - start_index + 1
if length > max_answer_length:
continue
prelim_predictions.append(
_PrelimPrediction(
feature_index=feature_index,
start_index=start_index,
end_index=end_index,
start_logit=result.start_logits[start_index],
end_logit=result.end_logits[end_index]))
if with_negative:
prelim_predictions.append(
_PrelimPrediction(
feature_index=min_null_feature_index,
start_index=0,
end_index=0,
start_logit=null_start_logit,
end_logit=null_end_logit))
prelim_predictions = sorted(
prelim_predictions,
key=lambda x: (x.start_logit + x.end_logit),
reverse=True)
_NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name
"NbestPrediction", ["text", "start_logit", "end_logit"])
seen_predictions = {}
nbest = []
for pred in prelim_predictions:
if len(nbest) >= n_best_size:
break
feature = features[pred.feature_index]
if pred.start_index > 0: # this is a non-null prediction
tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1
)]
orig_doc_start = feature.token_to_orig_map[pred.start_index]
orig_doc_end = feature.token_to_orig_map[pred.end_index]
orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end +
1)]
tok_text = " ".join(tok_tokens)
# De-tokenize WordPieces that have been split off.
tok_text = tok_text.replace(" ##", "")
tok_text = tok_text.replace("##", "")
# Clean whitespace
tok_text = tok_text.strip()
tok_text = " ".join(tok_text.split())
orig_text = " ".join(orig_tokens)
final_text = _get_final_text(tok_text, orig_text, do_lower_case,
verbose)
if final_text in seen_predictions:
continue
seen_predictions[final_text] = True
else:
final_text = ""
seen_predictions[final_text] = True
nbest.append(
_NbestPrediction(
text=final_text,
start_logit=pred.start_logit,
end_logit=pred.end_logit))
# if we didn't inlude the empty option in the n-best, inlcude it
if with_negative:
if "" not in seen_predictions:
nbest.append(
_NbestPrediction(
text="",
start_logit=null_start_logit,
end_logit=null_end_logit))
# In very rare edge cases we could have no valid predictions. So we
# just create a nonce prediction in this case to avoid failure.
if not nbest:
nbest.append(
_NbestPrediction(
text="empty", start_logit=0.0, end_logit=0.0))
assert len(nbest) >= 1
total_scores = []
best_non_null_entry = None
for entry in nbest:
total_scores.append(entry.start_logit + entry.end_logit)
if not best_non_null_entry:
if entry.text:
best_non_null_entry = entry
# debug
if best_non_null_entry is None:
print("Emmm..., sth wrong")
probs = _compute_softmax(total_scores)
nbest_json = []
for (i, entry) in enumerate(nbest):
output = collections.OrderedDict()
output["text"] = entry.text
output["probability"] = probs[i]
output["start_logit"] = entry.start_logit
output["end_logit"] = entry.end_logit
nbest_json.append(output)
assert len(nbest_json) >= 1
if not with_negative:
all_predictions[example.qas_id] = nbest_json[0]["text"]
else:
# predict "" iff the null score - the score of best non-null > threshold
score_diff = score_null - best_non_null_entry.start_logit - (
best_non_null_entry.end_logit)
scores_diff_json[example.qas_id] = score_diff
if score_diff > null_score_diff_threshold:
all_predictions[example.qas_id] = ""
else:
all_predictions[example.qas_id] = best_non_null_entry.text
all_nbest_json[example.qas_id] = nbest_json
with open(output_prediction_file, "w") as writer:
writer.write(json.dumps(all_predictions, indent=4) + "\n")
with open(output_nbest_file, "w") as writer:
writer.write(json.dumps(all_nbest_json, indent=4) + "\n")
if with_negative:
with open(output_null_log_odds_file, "w") as writer:
writer.write(json.dumps(scores_diff_json, indent=4) + "\n")
def _get_final_text(pred_text, orig_text, do_lower_case, verbose):
"""Project the tokenized prediction back to the original text."""
# When we created the data, we kept track of the alignment between original
# (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
# now `orig_text` contains the span of our original text corresponding to the
# span that we predicted.
#
# However, `orig_text` may contain extra characters that we don't want in
# our prediction.
#
# For example, let's say:
# pred_text = steve smith
# orig_text = Steve Smith's
#
# We don't want to return `orig_text` because it contains the extra "'s".
#
# We don't want to return `pred_text` because it's already been normalized
# (the MRQA eval script also does punctuation stripping/lower casing but
# our tokenizer does additional normalization like stripping accent
# characters).
#
# What we really want to return is "Steve Smith".
#
# Therefore, we have to apply a semi-complicated alignment heruistic between
# `pred_text` and `orig_text` to get a character-to-charcter alignment. This
# can fail in certain cases in which case we just return `orig_text`.
def _strip_spaces(text):
ns_chars = []
ns_to_s_map = collections.OrderedDict()
for (i, c) in enumerate(text):
if c == " ":
continue
ns_to_s_map[len(ns_chars)] = i
ns_chars.append(c)
ns_text = "".join(ns_chars)
return (ns_text, ns_to_s_map)
# We first tokenize `orig_text`, strip whitespace from the result
# and `pred_text`, and check if they are the same length. If they are
# NOT the same length, the heuristic has failed. If they are the same
# length, we assume the characters are one-to-one aligned.
tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)
tok_text = " ".join(tokenizer.tokenize(orig_text))
start_position = tok_text.find(pred_text)
if start_position == -1:
if verbose:
print("Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
return orig_text
end_position = start_position + len(pred_text) - 1
(orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
(tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)
if len(orig_ns_text) != len(tok_ns_text):
if verbose:
print("Length not equal after stripping spaces: '%s' vs '%s'",
orig_ns_text, tok_ns_text)
return orig_text
# We then project the characters in `pred_text` back to `orig_text` using
# the character-to-character alignment.
tok_s_to_ns_map = {}
for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
tok_s_to_ns_map[tok_index] = i
orig_start_position = None
if start_position in tok_s_to_ns_map:
ns_start_position = tok_s_to_ns_map[start_position]
if ns_start_position in orig_ns_to_s_map:
orig_start_position = orig_ns_to_s_map[ns_start_position]
if orig_start_position is None:
if verbose:
print("Couldn't map start position")
return orig_text
orig_end_position = None
if end_position in tok_s_to_ns_map:
ns_end_position = tok_s_to_ns_map[end_position]
if ns_end_position in orig_ns_to_s_map:
orig_end_position = orig_ns_to_s_map[ns_end_position]
if orig_end_position is None:
if verbose:
print("Couldn't map end position")
return orig_text
output_text = orig_text[orig_start_position:(orig_end_position + 1)]
return output_text
def _get_best_indexes(logits, n_best_size):
"""Get the n-best logits from a list."""
index_and_score = sorted(
enumerate(logits), key=lambda x: x[1], reverse=True)
best_indexes = []
for i in range(len(index_and_score)):
if i >= n_best_size:
break
best_indexes.append(index_and_score[i][0])
return best_indexes
def _compute_softmax(scores):
"""Compute softmax probability over raw logits."""
if not scores:
return []
max_score = None
for score in scores:
if max_score is None or score > max_score:
max_score = score
exp_scores = []
total_sum = 0.0
for score in scores:
x = math.exp(score - max_score)
exp_scores.append(x)
total_sum += x
probs = []
for score in exp_scores:
probs.append(score / total_sum)
return probs
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册