task_instance.py 9.6 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddlepalm.interface import reader as base_reader
from paddlepalm.interface import task_paradigm as base_paradigm
import os
import json
from paddle import fluid

class TaskInstance(object):
    
    def __init__(self, name, id, config={}, verbose=True):
        self._name = name
        self._config = config
        self._verbose = verbose

        self._save_infermodel_path = os.path.join(self._config['save_path'], 'infer_model')
        self._save_ckpt_path = os.path.join(self._config['save_path'], 'ckpt')

        # following flags can be fetch from instance config file
        self._is_target = config.get('is_target', True)
        self._first_target = config.get('is_first_target', False)
        self._task_reuse_scope = config.get('task_reuse_scope', name)

        self._feeded_var_names = None
        self._target_vars = None

        # training process management
        self._mix_ratio = None
        self._expected_train_steps = None
        self._expected_train_epochs = None
        self._steps_pur_epoch = None
        self._cur_train_epoch = 0
        self._cur_train_step = 0
        self._train_finish = False

        # 存放不同运行阶段(train,eval,pred)的数据集reader,key为phase,value为Reader实例
        self._reader = {'train': None, 'eval': None, 'pred': None}
        self._input_layer = None
        self._inputname_to_varname = {}
        self._task_layer = {'train': None, 'eval': None, 'pred': None}
        self._pred_input_name_list = []
        self._pred_input_varname_list = []
        self._pred_fetch_name_list = []
        self._pred_fetch_var_list = []

        self._Reader = None
        self._Paradigm = None

        self._exe = fluid.Executor(fluid.CPUPlace())

        self._save_protocol = {
            'input_names': 'self._pred_input_name_list',
            'input_varnames': 'self._pred_input_varname_list',
            'fetch_list': 'self._pred_fetch_name_list'}


    def build_task_layer(self, net_inputs, phase):
        output_vars = self._task_layer[phase].build(net_inputs)
        if phase == 'pred':
X
xixiaoyao 已提交
73 74 75 76 77
            if output_vars is not None:
                self._pred_fetch_name_list, self._pred_fetch_var_list = zip(*output_vars.items())
            else:
                self._pred_fetch_name_list = []
                self._pred_fetch_var_list = []
X
xixiaoyao 已提交
78 79 80 81 82 83 84 85 86 87 88 89
        return output_vars

    def postprocess(self, rt_outputs, phase):
        return self._task_layer[phase].postprocess(rt_outputs)

    def epoch_postprocess(self, epoch_inputs, phase):
        return self._task_layer[phase].epoch_postprocess(epoch_inputs)
    
    def save(self, suffix=''):
        dirpath = self._save_infermodel_path + suffix
        self._pred_input_varname_list = [str(i) for i in self._pred_input_varname_list]

X
xixiaoyao 已提交
90 91 92 93 94
        # del self._pred_input_varname_list[0]
        # del self._pred_input_varname_list[0]
        # del self._pred_input_varname_list[0]

        fluid.io.save_inference_model(dirpath, self._pred_input_varname_list, self._pred_fetch_var_list, self._exe, export_for_deployment = True)
X
xixiaoyao 已提交
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292
        # fluid.io.save_inference_model(dirpath, self._pred_input_varname_list, self._pred_fetch_var_list, self._exe, params_filename='__params__')
        print(self._name + ': inference model saved at ' + dirpath)

        conf = {}
        for k, strv in self._save_protocol.items():
            exec('v={}'.format(strv))
            conf[k] = v
        with open(os.path.join(dirpath, '__conf__'), 'w') as writer:
            writer.write(json.dumps(conf, indent=1))

    def load(self, infer_model_path=None):
        if infer_model_path is None:
            infer_model_path = self._save_infermodel_path
        for k,v in json.load(open(os.path.join(infer_model_path, '__conf__'))).items():
            strv = self._save_protocol[k]
            exec('{}=v'.format(strv))
        pred_prog, self._pred_input_varname_list, self._pred_fetch_var_list = \
            fluid.io.load_inference_model(infer_model_path, self._exe)
        # pred_prog, self._pred_input_varname_list, self._pred_fetch_var_list = \
        #     fluid.io.load_inference_model(infer_model_path, self._exe, params_filename='__params__')
        print(self._name+': inference model loaded from ' + infer_model_path)
        return pred_prog

    @property
    def name(self):
        return self._name

    @property
    def Reader(self):
        return self._Reader

    @Reader.setter
    def Reader(self, cls):
        assert base_reader.__name__ == cls.__bases__[-1].__name__, \
            "expect: {}, receive: {}.".format(base_reader.__name__, \
                                              cls.__bases__[-1].__name__)
        self._Reader = cls

    @property
    def Paradigm(self):
        return self._Paradigm

    @Paradigm.setter
    def Paradigm(self, cls):
        assert base_paradigm.__name__ == cls.__bases__[-1].__name__, \
            "expect: {}, receive: {}.".format(base_paradigm.__name__, \
                                              cls.__bases__[-1].__name__)
        self._Paradigm = cls

    @property
    def config(self):
        return self._config

    @property
    def reader(self):
        return self._reader

    @property
    def pred_input(self):
        return zip(*[self._pred_input_name_list, self._pred_input_varname_list])

    @pred_input.setter
    def pred_input(self, val):
        assert isinstance(val, dict)
        self._pred_input_name_list, self._pred_input_varname_list = \
            zip(*[[k, v.name] for k,v in val.items()])
        # print(self._pred_input_name_list)

    @property
    def pred_fetch_list(self):
        return [self._pred_fetch_name_list, self._pred_fetch_var_list]

    @property
    def task_layer(self):
        return self._task_layer

    @property
    def is_first_target(self):
        return self._is_first_target

    @is_first_target.setter
    def is_first_target(self, value):
        self._is_first_target = bool(value)
        if self._is_first_target:
            assert self._is_target, "ERROR: only target task could be set as main task."
        if self._verbose and self._is_first_target:
            print("{}: set as main task".format(self._name))

    @property
    def is_target(self):
        if self._is_target is not None:
            return self._is_target
        else:
            raise ValueError("{}: is_target is None".format(self._name))

    @is_target.setter
    def is_target(self, value):
        self._is_target = bool(value)
        if self._verbose:
            if self._is_target:
                print('{}: set as target task.'.format(self._name))
            else:
                print('{}: set as aux task.'.format(self._name))

    @property
    def mix_ratio(self):
        if self._mix_ratio is not None:
            return self._mix_ratio
        else:
            raise ValueError("{}: mix_ratio is None".format(self._name))

    @mix_ratio.setter
    def mix_ratio(self, value):
        self._mix_ratio = float(value)
        if self._verbose:
            print('{}: mix_ratio is set to {}'.format(self._name, self._mix_ratio))

    @property
    def expected_train_steps(self):
        return self._expected_train_steps

    @expected_train_steps.setter
    def expected_train_steps(self, value):
        self._expected_train_steps = value
        self._expected_train_epochs = value / float(self._steps_pur_epoch)

    @property
    def expected_train_epochs(self):
        return self._expected_train_epochs

    @property
    def cur_train_epoch(self):
        return self._cur_train_epoch

    @cur_train_epoch.setter
    def cur_train_epoch(self, value):
        self._cur_train_epoch = value

    @property
    def cur_train_step(self):
        return self._cur_train_step

    @cur_train_step.setter
    def cur_train_step(self, value):
        self._cur_train_step = value
        if self._cur_train_step > self._steps_pur_epoch:
            self._cur_train_epoch += 1
            self._cur_train_step = 1
        if self._is_target and self._cur_train_step + self._cur_train_epoch * self._steps_pur_epoch >= self._expected_train_steps:
            self._train_finish = True
            # fluid.io.save_inference_model(self._save_infermodel_path, )

    @property
    def steps_pur_epoch(self):
        return self._steps_pur_epoch

    @steps_pur_epoch.setter
    def steps_pur_epoch(self, value):
        self._steps_pur_epoch = value

    @property
    def train_finish(self):
        return self._train_finish

    @property
    def task_reuse_scope(self):
        if self._task_reuse_scope is not None:
            return self._task_reuse_scope
        else:
            raise ValueError("{}: task_reuse_scope is None".format(self._name))

    @task_reuse_scope.setter
    def task_reuse_scope(self, scope_name):
        self._task_reuse_scope = str(scope_name)
        if self._verbose:
            print('{}: task_reuse_scope is set to {}'.format(self._name, self._task_reuse_scope))








        

def check_instances(insts):
    """to check ids, first_target"""
    pass

def _check_ids():
    pass

def _check_targets():
    pass

def _check_reuse_scopes():
    pass