match.py 3.9 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
from paddle.fluid import layers
from paddlepalm.interface import task_paradigm
import numpy as np
import os

class TaskParadigm(task_paradigm):
    '''
    matching
    '''
    def __init__(self, config, phase, backbone_config=None):
        self._is_training = phase == 'train'
        self._hidden_size = backbone_config['hidden_size']

        if 'initializer_range' in config:
            self._param_initializer = config['initializer_range']
        else:
            self._param_initializer = fluid.initializer.TruncatedNormal(
                scale=backbone_config.get('initializer_range', 0.02))
        if 'dropout_prob' in config:
            self._dropout_prob = config['dropout_prob']
        else:
            self._dropout_prob = backbone_config.get('hidden_dropout_prob', 0.0)

        self._pred_output_path = config.get('pred_output_path', None)
        self._preds = []

    
    @property
    def inputs_attrs(self):
        if self._is_training:
            reader = {"label_ids": [[-1, 1], 'int64']}
        else:
            reader = {}
        bb = {"sentence_pair_embedding": [[-1, self._hidden_size], 'float32']}
        return {'reader': reader, 'backbone': bb}

    @property
    def outputs_attrs(self):
        if self._is_training:
            return {"loss": [[1], 'float32']}
        else:
            return {"logits": [[-1, 2], 'float32']}

    def build(self, inputs, scope_name=""):
        if self._is_training:
            labels = inputs["reader"]["label_ids"] 
        cls_feats = inputs["backbone"]["sentence_pair_embedding"]

        if self._is_training:
            cls_feats = fluid.layers.dropout(
                x=cls_feats,
                dropout_prob=self._dropout_prob,
                dropout_implementation="upscale_in_train")

        logits = fluid.layers.fc(
            input=cls_feats,
            size=2,
            param_attr=fluid.ParamAttr(
                name=scope_name+"cls_out_w",
                initializer=self._param_initializer),
            bias_attr=fluid.ParamAttr(
                name=scope_name+"cls_out_b",
                initializer=fluid.initializer.Constant(0.)))

        if self._is_training:
            ce_loss, probs = fluid.layers.softmax_with_cross_entropy(
                logits=logits, label=labels, return_softmax=True)
            loss = fluid.layers.mean(x=ce_loss)
            return {'loss': loss}
        else:
            return {'logits': logits}

    def postprocess(self, rt_outputs):
        if not self._is_training:
            logits = rt_outputs['logits']
            preds = np.argmax(logits, -1)
            self._preds.extend(preds.tolist())

    def epoch_postprocess(self, post_inputs):
        # there is no post_inputs needed and not declared in epoch_inputs_attrs, hence no elements exist in post_inputs
        if not self._is_training:
            if self._pred_output_path is None:
                raise ValueError('argument pred_output_path not found in config. Please add it into config dict/file.')
            with open(os.path.join(self._pred_output_path, 'predictions.json'), 'w') as writer:
                for p in self._preds:
                    writer.write(str(p)+'\n')
            print('Predictions saved at '+os.path.join(self._pred_output_path, 'predictions.json'))