mtl_controller.py 27.2 KB
Newer Older
W
wangxiao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from __future__ import print_function

import os
import sys
import importlib
import multiprocessing
from paddle import fluid
from paddle.fluid import layers
import yaml
import json
import logging
import time
import numpy as np

from paddlepalm.utils.saver import init_pretraining_params, init_checkpoint
from paddlepalm.utils.config_helper import PDConfig
from paddlepalm.utils.print_helper import print_dict
from paddlepalm.utils.reader_helper import create_net_inputs, create_iterator_fn, create_joint_iterator_fn, merge_input_attrs 

from paddlepalm.default_settings import *
from task_instance import TaskInstance, check_instances

DEBUG=False
VERBOSE=0

def _get_basename(f):
    return os.path.splitext(f)[0]


def _get_suffix(f):
    return os.path.splitext(f)[-1]


def _parse_yaml(f, asdict=True, support_cmd_line=False):
    assert os.path.exists(f), "file {} not found.".format(f)
    if support_cmd_line:
        args = PDConfig(yaml_file=f, fuse_args=True)
        args.build()
        return args.asdict() if asdict else args
    else:
        if asdict:
            with open(f, "r") as fin: 
                yaml_config = yaml.load(fin, Loader=yaml.SafeLoader)
            return yaml_config
        else:
            raise NotImplementedError()


def _parse_json(f, asdict=True, support_cmd_line=False):
    assert os.path.exists(f), "file {} not found.".format(f)
    if support_cmd_line:
        args = PDConfig(json_file=f, fuse_args=support_cmd_line)
        args.build()
        return args.asdict() if asdict else args
    else:
        if asdict:
            with open(f, "r") as fin: 
                config = json.load(fin)
            return config
        else:
            raise NotImplementedError()
            

def _parse_list(string, astype=str):
    assert isinstance(string, str), "{} is not a string.".format(string)
    if ',' not in string:
        return [astype(string)]
    string = string.replace(',', ' ')
    return [astype(i) for i in string.split()]


def _try_float(s):
    try:
        float(s)
        return(float(s))
    except:
        return s


def _check_conf(conf, checklist=None):
    assert isinstance(conf, dict), "{} is not a dict.".format(conf)
    ret = {}
    for k,v in conf.items():
        if isinstance(v, str):
            v = _try_float(v)
        ret[k] = v
    if checklist is not None:
        for k, t in checklist:
            assert k in ret, "required argument {} is NOT exist in config file.".format(k)
            assert isintance(ret[k], t), "value type of argument {} should be {}".format(k, t)
    return ret


# TODO: 增加None机制,允许hidden size、batch size和seqlen设置为None
def _check_io(in_attr, out_attr, strict=False, in_name="left", out_name="right"):
    for name, attr in in_attr.items():
        assert name in out_attr, in_name+': '+name+' not found in '+out_name
        if attr != out_attr[name]:
            if strict:
                raise ValueError(name+': shape or dtype not consistent!')
            else:
                logging.warning('{}: shape or dtype not consistent!\n{}:\n{}\n{}:\n{}'.format(name, in_name, attr, out_name, out_attr[name]))


def _merge_conf(conf1, conf2, conf1_first=True, strict=False):
    assert isinstance(conf1, dict), "{} is not a dict.".format(conf1)
    assert isinstance(conf2, dict), "{} is not a dict.".format(conf2)
    base_conf = conf2 if conf1_first else conf1
    base_conf = base_conf.copy()
    new_conf = conf1 if conf1_first else conf2

    for k, v in new_conf.items():
        if k in base_conf:
            if base_conf[k] != v:
                raise Warning("value of argument {} has been updated to {}.".format(k, v))
        else:
            if strict:
                continue
            
        base_conf[k] = v
    return base_conf


def _encode_inputs(inputs, scope_name, sep='/', cand_set=None):
    outputs = {}
    for k, v in inputs.items():
        if cand_set is not None:
            if k in cand_set:
                outputs[k] = v
            if scope_name+sep+k in cand_set:
                outputs[scope_name+sep+k] = v
        else:
            outputs[scope_name+sep+k] = v
    return outputs


def _decode_inputs(inputs, scope_name, sep='/', keep_unk_keys=True):
    outputs = {}
    for name, value in inputs.items():
        # var for backbone are also available to tasks
        if keep_unk_keys and sep not in name:
            outputs[name] = value
        # var for this inst
        if name.startswith(scope_name+'/'):
            outputs[name[len(scope_name+'/'):]] = value
    return outputs


def _init_env(use_gpu):
    if use_gpu:
        place = fluid.CUDAPlace(0)
        dev_count = fluid.core.get_cuda_device_count()
    else:
        place = fluid.CPUPlace()
        dev_count = int(os.environ.get('CPU_NUM', multiprocessing.cpu_count()))
    return fluid.Executor(place), dev_count


def _fit_attr(conf, fit_attr, strict=False):
    for i, attr in fit_attr.items():
        if i not in conf:
            if strict:
                raise Exception('Argument {} is required to create a controller.'.format(i))
            else:
                continue
        conf[i] = attr(conf[i])
    return conf


class Controller(object):

    def __init__(self, config, task_dir='.', for_train=True):
        """
        Args:
            config: (str|dict) 字符串类型时,给出yaml格式的config配置文件路径;
        """

        self._for_train = for_train
        assert isinstance(config, str) or isinstance(config, dict), "a config dict or config file path is required to create a Controller."

        if isinstance(config, str):
            mtl_conf = _parse_yaml(config, support_cmd_line=True)
        else:
            mtl_conf = config
                
        mtl_conf = _check_conf(mtl_conf)
        mtl_conf = _fit_attr(mtl_conf, REQUIRED_ARGS, strict=True)
        mtl_conf = _fit_attr(mtl_conf, OPTIONAL_ARGS, strict=False)

        exe, dev_count = _init_env(use_gpu=mtl_conf.get('use_gpu', True))
        self.exe = exe
        self.dev_count = dev_count

        print_dict(mtl_conf, title='global configuration')

        # parse task instances and target tags
        instnames = _parse_list(mtl_conf['task_instance'])
        assert len(instnames) == len(set(instnames)), "repeated task_instance is NOT supported."
        num_instances = len(instnames)
        self.num_instances = num_instances

        instname_to_conf = {}
        instname_to_id = {}
        for id, instname in enumerate(instnames):
            instpath = os.path.join(task_dir, instname+'.yaml')
            conf = _parse_yaml(instpath, support_cmd_line=False)
            # conf = _check_conf(conf, TASK_INSTANCE_REQUIRED_ARGS)
            conf = _check_conf(conf)
            temp_conf = _merge_conf(mtl_conf, conf, strict=True)
            print_dict(temp_conf, title='{} configuration'.format(instname))
            conf = _merge_conf(mtl_conf, conf)
            
            instname_to_conf[instname] = conf
            instname_to_id[instname] = id

        # prepare backbone
        if 'backbone_config_path' in mtl_conf:
            bb_conf = _parse_json(mtl_conf['backbone_config_path'])
            bb_conf = _merge_conf(mtl_conf, bb_conf)
        else:
            bb_conf = mtl_conf
        print_dict(bb_conf, title = 'backbone configuration'.format(instname))

        bb_name = mtl_conf['backbone']
        bb_mod = importlib.import_module(BACKBONE_DIR + '.' + bb_name)
        Backbone = getattr(bb_mod, 'Model')

        # create task instances
        instances = []
        for name in instnames:
            instances.append(TaskInstance(name, instname_to_id[name], instname_to_conf[name]))

        check_instances(instances)

        # parse target_tag
        if 'target_tag' in mtl_conf:
            target_tag = str(mtl_conf['target_tag'])
            tags = _parse_list(target_tag, astype=int)
            assert len(tags) == len(instnames), "number of target_tag is NOT consistent with that in task_instance."
            for tag, inst in zip(tags, instances):
                inst.is_target = tag
        else:
            tags = [i.is_target for i in instances]
        num_targets = sum(tags)
        num_auxes = num_instances - num_targets

        # parse mix ratios
        if 'mix_ratio' in mtl_conf:
            mix_ratio = str(mtl_conf['mix_ratio'])
            mrs = _parse_list(mix_ratio, astype=float)
            assert len(mrs) == num_instances, "number of mix_ratios is NOT consistent with num_instances."
        else:
            mrs = [1.0] * num_instances

        for mr, inst in zip(mrs, instances):
            inst.mix_ratio = mr

        # parse task layer reuse tags
        instname_to_reusehost = {i:i for i in instnames}
        if 'task_reuse_tag' in mtl_conf:
            tags = _parse_list(mtl_conf['task_reuse_tag'], astype=int)
            assert len(tags) == num_targets, 'number of reuse_tags is NOT consistent with number of instances.'
        else:
            tags = []
            mapper = {}
            for inst in instances:
                history = set()
                history.add(inst.name)
                cur_inst = inst
                while True:
                    if cur_inst.task_reuse_scope in history:
                        mapper[inst.name] = len(tags)
                        break
                    elif cur_inst.task_reuse_scope in mapper:
                        mapper[inst.name] = mapper[cur_inst.task_reuse_scope]
                        break
                    else:
                        cur_inst = name_to_instance[cur_inst.task_reuse_scope]
                        history.add(cur_inst.name)

                tags.append(mapper[inst.name])

        for i in range(1, num_instances):
            for j in range(i):
                if tags[i] == tags[j]:
                    assert instances[i].Paradigm == \
                            instances[j].Paradigm, \
                            "paradigm of reuse tasks should be consistent"
                    instances[i].task_reuse_scope = instances[j].name
                    break

        self.instances = instances
        self.mrs = mrs
        self.Backbone = Backbone
        self.bb_conf = bb_conf
        self.bb_name = bb_name

        self.has_init_train = False
        self.has_init_pred = False

        if self._for_train:
            print("initialing for training...")
            self._init_train()
            self.has_init_train = True
            
    def _init_train(self):
        
        instances = self.instances
        Backbone = self.Backbone
        bb_conf = self.bb_conf
        bb_name = self.bb_name
        dev_count = self.dev_count
        num_instances = len(instances)
        mrs = self.mrs

        # set first_target/main task instance
        main_inst = None
        for inst in instances:
            if inst.is_target:
                main_inst = inst
                inst.is_first_target = True
                break
        main_conf = main_inst.config
        if not os.path.exists(main_conf['save_path']):
            os.makedirs(main_conf['save_path'])
        
        # prepare backbone
        train_backbone = Backbone(bb_conf, phase='train')
        pred_backbone = Backbone(bb_conf, phase='pred')

        # create reader, task
        # then check i/o across reader, backbone and task_layer
        task_attrs = []
        pred_task_attrs = []
        for inst in instances:
            train_reader = inst.Reader(inst.config, phase='train')
            inst.reader['train'] = train_reader
            train_parad = inst.Paradigm(inst.config, phase='train', backbone_config=bb_conf)
            inst.task_layer['train'] = train_parad
            task_attr_from_reader = _encode_inputs(train_parad.inputs_attrs['reader'], inst.name)
            task_attrs.append(task_attr_from_reader)

            _check_io(train_backbone.inputs_attr, train_reader.outputs_attr, in_name=bb_name+'_backbone', out_name='reader.train')
            _check_io(train_parad.inputs_attrs['reader'], train_reader.outputs_attr, in_name='task_paradigm.train.reader', out_name='reader.train')
            _check_io(train_parad.inputs_attrs['backbone'], train_backbone.outputs_attr, in_name='task_paradigm.train.backbone', out_name=bb_name+'_backbone')

            if inst.is_target:
                if 'pred_file' not in inst.config:
                    inst.config['pred_file'] = ''
                pred_reader = inst.Reader(inst.config, phase='pred')
                pred_parad = inst.Paradigm(inst.config, phase='pred', backbone_config=bb_conf)
                inst.task_layer['pred'] = pred_parad
                task_attr_from_reader = _encode_inputs(pred_parad.inputs_attrs['reader'], inst.name)
                pred_task_attrs.append(task_attr_from_reader)
                _check_io(pred_backbone.inputs_attr, pred_reader.outputs_attr, in_name=bb_name+'_backbone', out_name='reader.pred')
                _check_io(pred_parad.inputs_attrs['reader'], pred_reader.outputs_attr, in_name='task_paradigm.pred.reader', out_name='reader.pred')
                _check_io(pred_parad.inputs_attrs['backbone'], pred_backbone.outputs_attr, in_name='task_paradigm.pred.backbone', out_name=bb_name+'_backbone')

        # merge reader input attrs from backbone and task_instances
        joint_input_names, joint_shape_and_dtypes, name_to_position = merge_input_attrs(train_backbone.inputs_attr, task_attrs)
        pred_joint_input_names, pred_joint_shape_and_dtypes, _ = merge_input_attrs(pred_backbone.inputs_attr, pred_task_attrs, insert_taskid=False, insert_batchsize=False, insert_seqlen=False, insert_batchsize_x_seqlen=False)
        # shapes: [task_id, shapes_of_backbone, shapes_of_inst1, ..., shapes_of_instN]

        if DEBUG:
            print('----- for debug -----')
            print('joint input names:')
            print(joint_input_names)
            print('joint input shape and dtypes:')
            print(joint_shape_and_dtypes)

        # load data
        for inst in instances:
            print(inst.name+": preparing data...", end='')
            inst.reader['train'].load_data()
            print('ok!')

        # merge dataset iterators and create net input vars
        iterators = []
        prefixes = []
        mrs = []
        for inst in instances:
            iterators.append(inst.reader['train'].iterator())
            prefixes.append(inst.name)
            mrs.append(inst.mix_ratio)

        joint_iterator_fn = create_joint_iterator_fn(iterators, prefixes, joint_shape_and_dtypes, mrs, name_to_position, dev_count=dev_count, verbose=VERBOSE)

        input_attrs = [[i, j, k] for i, (j,k) in zip(joint_input_names, joint_shape_and_dtypes)]
        pred_input_attrs = [[i, j, k] for i, (j,k) in zip(pred_joint_input_names, pred_joint_shape_and_dtypes)]
        net_inputs = create_net_inputs(input_attrs, async=True, iterator_fn=joint_iterator_fn, dev_count=dev_count, n_prefetch=3)

        # build backbone and task layers
        train_prog = fluid.default_main_program()
        train_init_prog = fluid.default_startup_program()
        bb_output_vars = train_backbone.build(net_inputs, scope_name='__paddlepalm_')
        assert sorted(bb_output_vars.keys()) == sorted(train_backbone.outputs_attr.keys())
        
        pred_prog = fluid.Program()
        pred_init_prog = fluid.Program()

        with fluid.program_guard(main_program = pred_prog, startup_program = pred_init_prog):
            pred_net_inputs = create_net_inputs(pred_input_attrs)
            pred_bb_output_vars = pred_backbone.build(pred_net_inputs, scope_name='__paddlepalm_')

        fluid.framework.switch_main_program(train_prog)
        fluid.framework.switch_startup_program(train_init_prog)

        task_output_vars = {}
        for inst in instances:
            task_inputs = {'backbone': bb_output_vars}
            task_inputs_from_reader = _decode_inputs(net_inputs, inst.name)
            task_inputs['reader'] = task_inputs_from_reader

            scope = inst.task_reuse_scope + '/'
            with fluid.unique_name.guard(scope):
                output_vars = inst.build_task_layer(task_inputs, phase='train', scope=scope)
                output_vars = {inst.name+'/'+key: val for key, val in output_vars.items()}
                old = len(task_output_vars) # for debug
                task_output_vars.update(output_vars)
                assert len(task_output_vars) - old == len(output_vars) # for debug

            # prepare predict vars for saving inference model
            if inst.is_target:

                with fluid.program_guard(pred_prog, pred_init_prog):
                    cur_inputs = _decode_inputs(pred_net_inputs, inst.name)
                    inst.pred_input = cur_inputs
                    pred_task_inputs = {'backbone': pred_bb_output_vars, 'reader': cur_inputs}
                    scope = inst.task_reuse_scope + '/'
                    with fluid.unique_name.guard(scope):
                        inst.build_task_layer(pred_task_inputs, phase='pred', scope=scope)


        bb_fetches = {k: v.name for k,v in bb_output_vars.items()}
        task_fetches = {k: v.name for k,v in task_output_vars.items()}
        fetches = task_fetches
        fetches['__task_id'] = net_inputs['__task_id'].name

        # compute loss
        task_id_var = net_inputs['__task_id']
        task_id_vec = layers.one_hot(task_id_var, num_instances)
        losses = fluid.layers.concat([task_output_vars[inst.name+'/loss'] for inst in instances], axis=0)
        loss = layers.reduce_sum(task_id_vec * losses)

        main_reader = main_inst.reader['train']

        num_examples = main_reader.num_examples
        for inst in instances:
            max_train_steps = int(main_conf['num_epochs']* inst.mix_ratio * (num_examples // main_conf['batch_size']  // dev_count))
            if inst.is_target:
                print('{}: expected train steps {}.'.format(inst.name, max_train_steps))
            inst.steps_pur_epoch = inst.reader['train'].num_examples // main_conf['batch_size']  // dev_count
            inst.expected_train_steps = max_train_steps

        global_max_train_steps = int(main_conf['num_epochs'] * sum(mrs) * (num_examples // main_conf['batch_size']  // dev_count))
        print('Estimated overall train steps {}.'.format(global_max_train_steps))

        if 'warmup_proportion' in main_conf and main_conf['warmup_proportion'] > 0:
            warmup_steps = int(global_max_train_steps * main_conf['warmup_proportion'])
            print('Warmup steps: '+str(warmup_steps))
        else:
            warmup_steps = 0

        # build optimizer
        if 'optimizer' in main_conf:
            optim_mod = importlib.import_module(OPTIMIZER_DIR + '.' + main_conf['optimizer'])
            optimize = getattr(optim_mod, OPTIMIZE_METHOD)
            optimize(loss, main_conf, max_train_steps, warmup_steps, fluid.default_main_program())

            loss.persistable = True
            if main_conf.get('use_ema', False):
                assert 'ema_decay' in main_conf, "ema_decay should be set when use_ema is enabled."
                ema = fluid.optimizer.ExponentialMovingAverage(main_conf['ema_decay'])
                ema.update()

        # prepare for train
        self.train_backbone = train_backbone
        self.train_program = fluid.CompiledProgram(fluid.default_main_program()).with_data_parallel(loss_name=loss.name)
        self.saver_program = fluid.default_main_program()

        self.main_inst = main_inst
        self.fetches = fetches
        self.has_init_train = True
        self.has_init_pred = True

        self.exe.run(fluid.default_startup_program())
        print("\nRandomly initialize parameters...\n")

    def _init_pred(self, instance, infer_model_path):
        inst = instance
        if 'pred_output_path' not in inst.config:
            inst.config['pred_output_path'] = os.path.join(inst.config.get('save_path', '.'), inst.name)

        if not os.path.exists(inst.config['pred_output_path']):
            os.makedirs(inst.config['pred_output_path'])

        pred_backbone = self.Backbone(self.bb_conf, phase='pred')
        pred_parad = inst.Paradigm(inst.config, phase='pred', backbone_config=self.bb_conf)
        inst.task_layer['pred'] = pred_parad
        pred_joint_input_names, pred_joint_shape_and_dtypes, name_to_position = merge_input_attrs(
            pred_backbone.inputs_attr, inst.task_layer['pred'].inputs_attrs['reader'], 
            insert_taskid=False, insert_batchsize=False, insert_seqlen=False, insert_batchsize_x_seqlen=False)

        pred_prog = inst.load(infer_model_path)
        if inst.reader['pred'] is None:
            pred_reader = inst.Reader(inst.config, phase='pred')
            inst.reader['pred'] = pred_reader
        return pred_prog

W
wangxiao 已提交
525
    def load_pretrain(self, pretrain_path=None):
W
wangxiao 已提交
526
        # load pretrain model (or ckpt)
W
wangxiao 已提交
527 528 529
        if pretrain_path is None:
            assert 'pretrain_path' in self.main_conf, "pretrain_path NOT set."
            pretrain_path = self.main_conf['pretrain_path']
W
wangxiao 已提交
530 531 532

        init_pretraining_params(
            self.exe,
W
wangxiao 已提交
533
            pretrain_path,
W
wangxiao 已提交
534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679
            main_program=fluid.default_startup_program())


    def train(self):

        if not self.has_init_train:
            self._init_train()
            self.has_init_train = True

        instances = self.instances
        num_instances = self.num_instances
        main_inst = self.main_inst
        main_conf = main_inst.config

        backbone = self.train_backbone
        train_program = self.train_program
        saver_program = self.saver_program
        fetches = self.fetches

        finish = []
        for inst in instances:
            if inst.is_target:
                if inst.expected_train_steps > 0:
                    finish.append(False)
                else:
                    finish.append(True)
                    print(inst.name+': train finished!')
                    inst.save()
        
        def train_finish():
            for inst in instances:
                if inst.is_target:
                    if not inst.train_finish:
                        return False
            return True

        # do training
        fetch_names, fetch_list = zip(*fetches.items())

        main_step = 0 # only count for main task
        global_step = 0 # count for all tasks
        epoch = 0
        time_begin = time.time()
        backbone_buffer = []
        while not train_finish():
            rt_outputs = self.exe.run(train_program, fetch_list=fetch_list)
            rt_outputs = {k:v for k,v in zip(fetch_names, rt_outputs)}
            rt_task_id = np.squeeze(rt_outputs['__task_id']).tolist()
            rt_task_id = rt_task_id[0] if isinstance(rt_task_id, list) else rt_task_id
            cur_task = instances[rt_task_id]

            backbone_rt_outputs = {k:v for k,v in rt_outputs.items() if '/' not in k}
            backbone_buffer.append(backbone.postprocess(backbone_rt_outputs))
            
            task_rt_outputs = {k[len(cur_task.name+'/'):]: v for k,v in rt_outputs.items() if k.startswith(cur_task.name+'/')}
            instances[rt_task_id].task_layer['train'].postprocess(task_rt_outputs)

            global_step += 1
            cur_task.cur_train_step += 1

            if cur_task.save_infermodel_every_n_steps > 0 and cur_task.cur_train_step % cur_task.save_infermodel_every_n_steps == 0:
                cur_task.save(suffix='.step'+str(cur_task.cur_train_step))

            if global_step % main_conf.get('print_every_n_steps', 5) == 0:
                loss = rt_outputs[cur_task.name+'/loss']
                loss = np.mean(np.squeeze(loss)).tolist()

                time_end = time.time()
                time_cost = time_end - time_begin

                print("Global step: {}. Task: {}, step {}/{} (epoch {}), loss: {:.3f}, speed: {:.2f} steps/s".format(
                       global_step, cur_task.name, cur_task.cur_train_step, cur_task.steps_pur_epoch, cur_task.cur_train_epoch,
                       loss, main_conf.get('print_every_n_steps', 5) / time_cost))
                time_begin = time.time()

            if cur_task.train_finish and cur_task.cur_train_step + cur_task.cur_train_epoch * cur_task.steps_pur_epoch == cur_task.expected_train_steps:
                print(cur_task.name+': train finished!')
                cur_task.save()

            if 'save_every_n_steps' in main_conf and global_step % main_conf['save_every_n_steps'] == 0:
                save_path = os.path.join(main_conf['save_path'],
                                         "step_" + str(global_step))
                fluid.io.save_persistables(self.exe, save_path, saver_program)

        print("ALL tasks train finished, exiting...")
            
    def pred(self, task_instance, inference_model_dir=None):
        if self._for_train:
            raise Exception('This controller is a trainer. Please build a new controller with for_train=False for predicting.')

        assert isinstance(task_instance, str)
        if isinstance(inference_model_dir, str):
            assert os.path.exists(inference_model_dir), inference_model_dir+" not found."
        # if not self.has_init_pred and inference_model_dir is None:
        #     raise ValueError('infer_model_path is required for prediction.')
        if inference_model_dir is None:
            assert 'save_path' in self.mtl_conf, "one of the `inference_model_dir` and 'save_path' should be set to load inference model."
            inference_model_dir = os.path.join(self.mtl_conf['save_path'], task_instance, 'infer_model')

        instance = None
        for inst in self.instances:
            if inst.name == task_instance:
                instance = inst
                break

        if instance is None:
            raise ValueError(task_instance + ' is not a valid task_instance.')

        pred_prog = self._init_pred(instance, inference_model_dir)
                
        inst = instance
        print(inst.name+": loading data...")
        inst.reader['pred'].load_data()
        fetch_names, fetch_vars = inst.pred_fetch_list

        print('predicting...')
        mapper = {k:v for k,v in inst.pred_input}
        buf = []
        for feed in inst.reader['pred'].iterator():
            feed = _encode_inputs(feed, inst.name, cand_set=mapper)
            feed = {mapper[k]: v for k,v in feed.items()}

            rt_outputs = self.exe.run(pred_prog, feed, fetch_vars)
            rt_outputs = {k:v for k,v in zip(fetch_names, rt_outputs)}
            inst.postprocess(rt_outputs, phase='pred')
        if inst.task_layer['pred'].epoch_inputs_attrs:
            reader_outputs = inst.reader['pred'].get_epoch_outputs()
        else:
            reader_outputs = None
        inst.epoch_postprocess({'reader':reader_outputs}, phase='pred')


if __name__ == '__main__':
    assert len(sys.argv) == 2, "Usage: python mtl_controller.py <mtl_conf_path>"
    conf_path = sys.argv[1]
    del sys.argv[1]
    controller = Controller(conf_path)
    if controller.main_conf['do_train']:
        controller.train()



__all__ = ["Controller"]