task_instance.py 10.3 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddlepalm.interface import reader as base_reader
from paddlepalm.interface import task_paradigm as base_paradigm
import os
import json
from paddle import fluid
X
xixiaoyao 已提交
21 22
import importlib
from paddlepalm.default_settings import *
X
xixiaoyao 已提交
23

X
xixiaoyao 已提交
24 25 26 27 28 29 30

def check_req_args(conf, name):
    assert 'reader' in conf, name+': reader is required to build TaskInstance.'
    assert 'paradigm' in conf, name+': paradigm is required to build TaskInstance.'
    assert 'train_file' in conf or 'pred_file' in conf, name+': at least train_file or pred_file should be provided to build TaskInstance.'


X
xixiaoyao 已提交
31 32
class TaskInstance(object):
    
X
xixiaoyao 已提交
33
    def __init__(self, name, id, config, verbose=True):
X
xixiaoyao 已提交
34 35 36 37
        self._name = name
        self._config = config
        self._verbose = verbose

X
xixiaoyao 已提交
38
        check_req_args(config, name)
X
xixiaoyao 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51

        # parse Reader and Paradigm
        reader_name = config['reader']
        reader_mod = importlib.import_module(READER_DIR + '.' + reader_name)
        Reader = getattr(reader_mod, 'Reader')

        parad_name = config['paradigm']
        parad_mod = importlib.import_module(PARADIGM_DIR + '.' + parad_name)
        Paradigm = getattr(parad_mod, 'TaskParadigm')

        self._Reader = Reader
        self._Paradigm = Paradigm

X
xixiaoyao 已提交
52
        self._save_infermodel_path = os.path.join(self._config['save_path'], self._name, 'infer_model')
X
xixiaoyao 已提交
53
        self._save_ckpt_path = os.path.join(self._config['save_path'], 'ckpt')
X
xixiaoyao 已提交
54
        self._save_infermodel_every_n_steps = config.get('save_infermodel_every_n_steps', -1)
X
xixiaoyao 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

        # following flags can be fetch from instance config file
        self._is_target = config.get('is_target', True)
        self._first_target = config.get('is_first_target', False)
        self._task_reuse_scope = config.get('task_reuse_scope', name)

        self._feeded_var_names = None
        self._target_vars = None

        # training process management
        self._mix_ratio = None
        self._expected_train_steps = None
        self._expected_train_epochs = None
        self._steps_pur_epoch = None
        self._cur_train_epoch = 0
        self._cur_train_step = 0
        self._train_finish = False

        # 存放不同运行阶段(train,eval,pred)的数据集reader,key为phase,value为Reader实例
        self._reader = {'train': None, 'eval': None, 'pred': None}
        self._input_layer = None
        self._inputname_to_varname = {}
        self._task_layer = {'train': None, 'eval': None, 'pred': None}
        self._pred_input_name_list = []
        self._pred_input_varname_list = []
        self._pred_fetch_name_list = []
        self._pred_fetch_var_list = []

        self._exe = fluid.Executor(fluid.CPUPlace())

        self._save_protocol = {
            'input_names': 'self._pred_input_name_list',
            'input_varnames': 'self._pred_input_varname_list',
            'fetch_list': 'self._pred_fetch_name_list'}


X
xixiaoyao 已提交
91 92
    def build_task_layer(self, net_inputs, phase, scope=""):
        output_vars = self._task_layer[phase].build(net_inputs, scope_name=scope)
X
xixiaoyao 已提交
93
        if phase == 'pred':
X
xixiaoyao 已提交
94
            if output_vars is not None:
W
wangxiao 已提交
95
                self._pred_fetch_name_list, self._pred_fetch_var_list = list(zip(*list(output_vars.items())))
X
xixiaoyao 已提交
96 97 98
            else:
                self._pred_fetch_name_list = []
                self._pred_fetch_var_list = []
X
xixiaoyao 已提交
99 100 101 102 103 104 105 106 107 108 109 110
        return output_vars

    def postprocess(self, rt_outputs, phase):
        return self._task_layer[phase].postprocess(rt_outputs)

    def epoch_postprocess(self, epoch_inputs, phase):
        return self._task_layer[phase].epoch_postprocess(epoch_inputs)
    
    def save(self, suffix=''):
        dirpath = self._save_infermodel_path + suffix
        self._pred_input_varname_list = [str(i) for i in self._pred_input_varname_list]

X
xixiaoyao 已提交
111 112 113
        # fluid.io.save_inference_model(dirpath, self._pred_input_varname_list, self._pred_fetch_var_list, self._exe, export_for_deployment = True)
        prog = fluid.default_main_program().clone()
        fluid.io.save_inference_model(dirpath, self._pred_input_varname_list, self._pred_fetch_var_list, self._exe, prog)
X
xixiaoyao 已提交
114 115

        conf = {}
W
wangxiao 已提交
116
        for k, strv in list(self._save_protocol.items()): # py3
X
xixiaoyao 已提交
117 118 119 120
            exec('v={}'.format(strv))
            conf[k] = v
        with open(os.path.join(dirpath, '__conf__'), 'w') as writer:
            writer.write(json.dumps(conf, indent=1))
X
xixiaoyao 已提交
121
        print(self._name + ': inference model saved at ' + dirpath)
X
xixiaoyao 已提交
122 123 124 125

    def load(self, infer_model_path=None):
        if infer_model_path is None:
            infer_model_path = self._save_infermodel_path
W
wangxiao 已提交
126
        for k,v in list(json.load(open(os.path.join(infer_model_path, '__conf__'))).items()): # py3
X
xixiaoyao 已提交
127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
            strv = self._save_protocol[k]
            exec('{}=v'.format(strv))
        pred_prog, self._pred_input_varname_list, self._pred_fetch_var_list = \
            fluid.io.load_inference_model(infer_model_path, self._exe)
        print(self._name+': inference model loaded from ' + infer_model_path)
        return pred_prog

    @property
    def name(self):
        return self._name

    @property
    def Reader(self):
        return self._Reader

X
xixiaoyao 已提交
142 143 144 145 146 147
    # @Reader.setter
    # def Reader(self, cls):
    #     assert base_reader.__name__ == cls.__bases__[-1].__name__, \
    #         "expect: {}, receive: {}.".format(base_reader.__name__, \
    #                                           cls.__bases__[-1].__name__)
    #     self._Reader = cls
X
xixiaoyao 已提交
148 149 150 151 152

    @property
    def Paradigm(self):
        return self._Paradigm

X
xixiaoyao 已提交
153 154 155 156 157 158
    # @Paradigm.setter
    # def Paradigm(self, cls):
    #     assert base_paradigm.__name__ == cls.__bases__[-1].__name__, \
    #         "expect: {}, receive: {}.".format(base_paradigm.__name__, \
    #                                           cls.__bases__[-1].__name__)
    #     self._Paradigm = cls
X
xixiaoyao 已提交
159 160 161 162 163 164 165 166 167 168 169

    @property
    def config(self):
        return self._config

    @property
    def reader(self):
        return self._reader

    @property
    def pred_input(self):
W
wangxiao 已提交
170
        return list(zip(*[self._pred_input_name_list, self._pred_input_varname_list])) # py3
X
xixiaoyao 已提交
171 172 173 174 175

    @pred_input.setter
    def pred_input(self, val):
        assert isinstance(val, dict)
        self._pred_input_name_list, self._pred_input_varname_list = \
W
wangxiao 已提交
176
            list(zip(*[[k, v.name] for k,v in list(val.items())])) # py3s
X
xixiaoyao 已提交
177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226

    @property
    def pred_fetch_list(self):
        return [self._pred_fetch_name_list, self._pred_fetch_var_list]

    @property
    def task_layer(self):
        return self._task_layer

    @property
    def is_first_target(self):
        return self._is_first_target

    @is_first_target.setter
    def is_first_target(self, value):
        self._is_first_target = bool(value)
        if self._is_first_target:
            assert self._is_target, "ERROR: only target task could be set as main task."
        if self._verbose and self._is_first_target:
            print("{}: set as main task".format(self._name))

    @property
    def is_target(self):
        if self._is_target is not None:
            return self._is_target
        else:
            raise ValueError("{}: is_target is None".format(self._name))

    @is_target.setter
    def is_target(self, value):
        self._is_target = bool(value)
        if self._verbose:
            if self._is_target:
                print('{}: set as target task.'.format(self._name))
            else:
                print('{}: set as aux task.'.format(self._name))

    @property
    def mix_ratio(self):
        if self._mix_ratio is not None:
            return self._mix_ratio
        else:
            raise ValueError("{}: mix_ratio is None".format(self._name))

    @mix_ratio.setter
    def mix_ratio(self, value):
        self._mix_ratio = float(value)
        if self._verbose:
            print('{}: mix_ratio is set to {}'.format(self._name, self._mix_ratio))

X
xixiaoyao 已提交
227 228 229 230
    @property
    def save_infermodel_every_n_steps(self):
        return self._save_infermodel_every_n_steps

X
xixiaoyao 已提交
231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307
    @property
    def expected_train_steps(self):
        return self._expected_train_steps

    @expected_train_steps.setter
    def expected_train_steps(self, value):
        self._expected_train_steps = value
        self._expected_train_epochs = value / float(self._steps_pur_epoch)

    @property
    def expected_train_epochs(self):
        return self._expected_train_epochs

    @property
    def cur_train_epoch(self):
        return self._cur_train_epoch

    @cur_train_epoch.setter
    def cur_train_epoch(self, value):
        self._cur_train_epoch = value

    @property
    def cur_train_step(self):
        return self._cur_train_step

    @cur_train_step.setter
    def cur_train_step(self, value):
        self._cur_train_step = value
        if self._cur_train_step > self._steps_pur_epoch:
            self._cur_train_epoch += 1
            self._cur_train_step = 1
        if self._is_target and self._cur_train_step + self._cur_train_epoch * self._steps_pur_epoch >= self._expected_train_steps:
            self._train_finish = True

    @property
    def steps_pur_epoch(self):
        return self._steps_pur_epoch

    @steps_pur_epoch.setter
    def steps_pur_epoch(self, value):
        self._steps_pur_epoch = value

    @property
    def train_finish(self):
        return self._train_finish

    @property
    def task_reuse_scope(self):
        if self._task_reuse_scope is not None:
            return self._task_reuse_scope
        else:
            raise ValueError("{}: task_reuse_scope is None".format(self._name))

    @task_reuse_scope.setter
    def task_reuse_scope(self, scope_name):
        self._task_reuse_scope = str(scope_name)
        if self._verbose:
            print('{}: task_reuse_scope is set to {}'.format(self._name, self._task_reuse_scope))





        

def check_instances(insts):
    """to check ids, first_target"""
    pass

def _check_ids():
    pass

def _check_targets():
    pass

def _check_reuse_scopes():
    pass