multihead_trainer.py 12.7 KB
Newer Older
W
wangxiao1021 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314

from paddle import fluid
from paddle.fluid import layers
from paddlepalm.distribute import gpu_dev_count, cpu_dev_count
from paddlepalm import Trainer
from paddlepalm.utils import reader_helper
import numpy as np
import time

dev_count = 1 if gpu_dev_count <= 1 else gpu_dev_count
VERBOSE=False


class MultiHeadTrainer(Trainer):
    """
    The core unit to start a multi-task training/predicting session. A MultiHeadTrainer is built based on several Trainers. Beyond the inheritance of Trainer, it additionally achieves model backbone reuse across tasks, trainer sampling for multi-task learning, and multi-head inference for effective evaluation and prediction. 
    """
    
    def __init__(self, trainers):
        """Create a new multi_head_trainer.

        Args:
            trainers: a list of Trainer objects.

        """
        # if reuse_flags is not None:
        #     assert len(reuse_flags) == len(trainers)
        Trainer.__init__(self, '')

        self._trainers = trainers

        name_maxlen = max([len(i.name) for i in self._trainers])
        self._name_pads = {i.name: name_maxlen-len(i.name) for i in self._trainers}

        self._train_init = False
        self._predict_init = False
        self._feeded_var_names = None
        self._cur_train_step = 0
        self._target_vars = None

        self._inputname_to_varname = {}
        self._pred_input_name_list = []
        self._pred_input_varname_list = []
        self._pred_fetch_name_list = []
        self._pred_fetch_var_list = []

        self._exe = None

        self._save_protocol = {
            'input_names': 'self._pred_input_name_list',
            'input_varnames': 'self._pred_input_varname_list',
            'fetch_list': 'self._pred_fetch_name_list'}

        self._check_save = lambda: False
        for t in self._trainers:
            t._set_multitask()

    def build_forward(self, backbone, heads):
        """
        Build forward computation graph for training, which usually built from input layer to loss node.

        Args:
            backbone: a Backbone object with phase == 'train', which is used to extract multi-level text features, e.g., contextual word embedding and sentence embedding.
            heads: a list of Head objects. Phase of each head should be set as 'train', which is used to build task specific output layers.
        
        Return:
            - loss_var: a Variable object. The computational graph variable(node) of loss.
        """

        if isinstance(heads, list):
            head_dict = {k.name: v for k,v in zip(self._trainers, heads)}
        elif isinstance(heads, dict):
            head_dict = heads
        else:
            raise ValueError()

        num_heads = len(self._trainers)
        assert len(head_dict) == num_heads

        for t in self._trainers:
            assert t.name in head_dict, "expected: {}, exists: {}".format(t.name, head_dict.keys())
        
        train_prog = fluid.Program()
        train_init_prog = fluid.Program()
        self._train_prog = train_prog
        self._train_init_prog = train_init_prog

        def get_loss(i):
            head = head_dict[self._trainers[i].name]
            # loss_var = self._trainers[i].build_forward(backbone, head, train_prog, train_init_prog)
            loss_var = self._trainers[i].build_forward(backbone, head)
            return loss_var
      
        # task_fns = {}
        # for i in range(num_heads):

        #     def task_loss():
        #         task_id = i
        #         return lambda: get_loss(task_id)

        #     task_fns[i] = task_loss()


        # task_fns = {i: lambda: get_loss(i) for i in range(num_heads)}
        task_fns = {i: lambda i=i: get_loss(i) for i in range(num_heads)}

        with fluid.program_guard(train_prog, train_init_prog):
            task_id_var = fluid.data(name="__task_id",shape=[1],dtype='int64')
            # task_id_var = fluid.layers.fill_constant(shape=[1],dtype='int64', value=1)
            # print(task_id_var.name)

            loss_var = layers.switch_case(
                branch_index=task_id_var,
                branch_fns=task_fns
            )
        self._task_id_var = task_id_var
        self._loss_var = loss_var
        self._fetch_list = [loss_var.name]
        # for b in train_prog.blocks:
        #     for var in b.vars:
        #         pass
                # if 'task_id' in var:
                #     print(var)
                #     exit()
                # print(var)
        if not self._multi_task:
            self._init_exe_prog(for_train=True)
        return loss_var

    def fit_readers(self, reader_dict):
        raise NotImplementedError()

    def fit_readers_with_mixratio(self, readers, sampling_reference, num_epochs, phase='train'):
        """
        Bind readers and loaded train/predict data to trainers. 

        Args:
            readers: a dict or list of Reader objects. For dict case, each key is a trainer's name, and the mapped value is the reader object to bind to the trainer. For list case, each 
        """
        self._check_phase(phase)

        if isinstance(readers, list):
            reader_dict = {k.name: v for k,v in zip(self._trainers, readers)}
        elif isinstance(readers, dict):
            reader_dict = readers
        else:
            raise ValueError()
        
        num_heads = len(self._trainers)
        assert len(reader_dict) == num_heads, "received number of readers is not consistent with trainers."

        trainer_dict = {t.name: t for t in self._trainers}
        assert sampling_reference in trainer_dict

        trainer_dict[sampling_reference]._set_task_id(self._task_id_var)
        trainer_dict[sampling_reference].fit_reader(reader_dict[sampling_reference])
        base_steps_pur_epoch = trainer_dict[sampling_reference]._steps_pur_epoch

        self._finish_steps = {}
        self._finish = {}
        input_names = []
        name_to_pos = []
        joint_shape_and_dtypes = []
        iterators = []
        prefixes = []
        mrs = []
        net_inputs = []
        global_steps = 0
        for t in self._trainers:
            assert t.name in reader_dict
            assert reader_dict[t.name].num_epochs is None, "{}: num_epochs is not None. \
                To run with multi-head mode, num_epochs of each Trainer should be set as None.".format(t.name)
            # print(num_epochs, t.mix_ratio, base_steps_pur_epoch)
            max_train_steps = int(num_epochs * t.mix_ratio * base_steps_pur_epoch)
            if not t._as_auxilary:
                print('{}: expected train steps {}.'.format(t.name, max_train_steps))
                self._finish_steps[t.name] = max_train_steps
                self._finish[t.name] = False
            else:
                self._finish_steps[t.name] = 9999999999
                self._finish[t.name] = True

            global_steps += max_train_steps
            if t.name != sampling_reference:
                t._set_task_id(self._task_id_var)
                t.fit_reader(reader_dict[t.name])
            net_inputs.append(t._net_inputs)
            prefixes.append(t.name)
            mrs.append(t.mix_ratio)
            iterators.append(t._raw_iterator_fn())
            input_names.append(t._input_names)
            name_to_pos.append(t._name_to_position)
            joint_shape_and_dtypes.append(t._shape_and_dtypes)

        print('Estimated overall train steps {}.'.format(global_steps))
        self._overall_train_steps = global_steps

        iterator_fn = reader_helper.create_multihead_iterator_fn(iterators, prefixes, joint_shape_and_dtypes, \
            mrs, input_names, name_to_pos, dev_count=dev_count)
        feed_batch_process_fn = reader_helper.create_feed_batch_process_fn(net_inputs)

        if gpu_dev_count > 1:
            distribute_feeder_fn = data_feeder(iterator_fn, feed_batch_process_fn)
        else:
            distribute_feeder_fn = iterator_fn

        if phase == 'train':
            self._train_reader = distribute_feeder_fn()
            self._feed_batch_process_fn = feed_batch_process_fn
        elif phase == 'predict':
            self._predict_reader = distribute_feeder_fn()
            self._pred_feed_batch_process_fn = feed_batch_process_fn

    def _check_finish(self, task_name, silent=False):
        trainers = {t.name:t for t in self._trainers}
        if trainers[task_name]._cur_train_step == self._finish_steps[task_name]:
            if not silent:
                print(task_name+' train finish!')
            self._finish[task_name]=True
        flags = list(set(self._finish.values()))
        return len(flags) == 1 and flags[0] == True
        
    def train(self, print_steps=5):
        """
        start training.

        Args:
            print_steps: int. Logging frequency of training message, e.g., current step, loss and speed.
        """
        iterator = self._train_reader
        self._distribute_train_prog = fluid.CompiledProgram(self._train_prog).with_data_parallel(loss_name=self._loss_var.name)
        for t in self._trainers:
            t._set_exe(self._exe)
            t._set_dist_train(self._distribute_train_prog)
            t._set_fetch_list(self._fetch_list)

        time_begin = time.time()
        for feed in iterator:
            # batch, task_id = feed
            rt_outputs, task_id = self.train_one_step(feed)

            task_rt_outputs = {k[len(self._trainers[task_id].name+'.'):]: v for k,v in rt_outputs.items() if k.startswith(self._trainers[task_id].name+'.')}
            self._trainers[task_id]._task_head.batch_postprocess(task_rt_outputs)

            if print_steps > 0 and self._cur_train_step % print_steps == 0:
                loss = rt_outputs[self._trainers[task_id].name+'.loss']
                loss = np.mean(np.squeeze(loss)).tolist()

                time_end = time.time()
                time_cost = time_end - time_begin

                print("global step: {}, {}: step {}/{} (epoch {}), loss: {:.3f}, speed: {:.2f} steps/s".format(
                       self._cur_train_step, ' '*self._name_pads[self._trainers[task_id].name]+self._trainers[task_id].name, \
                       (self._trainers[task_id]._cur_train_step-1) % self._trainers[task_id]._steps_pur_epoch + 1, \
                       self._trainers[task_id]._steps_pur_epoch, self._trainers[task_id]._cur_train_epoch, \
                       loss, print_steps / time_cost))
                time_begin = time.time()

            self._check_save()
            finish = self._check_finish(self._trainers[task_id].name)
            if finish:
                break

            # if cur_task.train_finish and cur_task.cur_train_step + cur_task.cur_train_epoch * cur_task.steps_pur_epoch == cur_task.expected_train_steps:
            #     print(cur_task.name+': train finished!')
            #     cur_task.save()

            # if (save_predict or save_ckpt) and self._cur_train_step % save_steps == 0:
            #     if save_predict:
            #         self.save(save_path, suffix='pred.step'+str(self._cur_train_step))
            #     if save_ckpt:
            #         fluid.io.save_persistables(self._exe, os.path.join(save_path, 'ckpt.step'+str(self._cur_train_step)), self._train_prog)
            #         print('checkpoint has been saved at '+os.path.join(save_path, 'ckpt.step'+str(self._cur_train_step)))


    def train_one_step(self, batch):

        if dev_count > 1:
            assert isinstance(batch, list)
            task_id = batch[0]['__task_id'][0]
        else:
            assert isinstance(batch, dict)
            task_id = batch['__task_id'][0]
            
        # rt_outputs = self._trainers[task_id].train_one_step(batch, self._exe, self._distribute_train_prog, self._fetch_list)
        rt_outputs = self._trainers[task_id].train_one_step(batch)

        self._cur_train_step += 1
        self._check_save()
        return rt_outputs, task_id
        
        # if dev_count > 1:
        #     # feed, mask, task_id = batch
        #     for f in feed:
        #         f['branch'] = np.array([task_id], dtype='int64')
        #     rt_outputs = self.exe.run(self._distribute_train_prog, feed=feed, fetch_list=self._trainers[task_id]._fetch_list)
        #     num_fakes = decode_fake(len(rt_outputs[0]), mask, self._trainers[task_id]._batch_size)
        #     for _ in range(num_fakes):
        #         for item in rt_outputs:
        #             item.pop()
        # else:
        #     feed, task_id = batch
        #     feed['branch'] = np.array([task_id], dtype='int64')
        #     rt_outputs = self._exe.run(self._distribute_train_prog, feed=feed, fetch_list=self._trainers[task_id]._fetch_list)

    def predict_one_batch(self, batch):
        raise NotImplementedError()

    def predict(self, output_dir=None, print_steps=1000):
        raise NotImplementedError()

    @property
    def overall_train_steps(self):
        return self._overall_train_steps