bert_model.py 5.5 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""v1.1 
BERT model."""

from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import paddle.fluid as fluid
from paddle.fluid import layers

import backbone.utils.transformer as transformer
    
class Model(object):
    
    def __init__(self,
                 config,
                 is_training=False,
                 model_name=''):

        self._emb_size = config["hidden_size"]
        self._n_layer = config["num_hidden_layers"]
        self._n_head = config["num_attention_heads"]
        self._voc_size = config["vocab_size"]
        self._max_position_seq_len = config["max_position_embeddings"]
        self._sent_types = config["type_vocab_size"]
        self._hidden_act = config["hidden_act"]
        self._prepostprocess_dropout = config["hidden_dropout_prob"]
        self._attention_dropout = config["attention_probs_dropout_prob"]

        self._is_training = is_training

        self.model_name = model_name

        self._word_emb_name = self.model_name + "word_embedding"
        self._pos_emb_name = self.model_name + "pos_embedding"
        self._sent_emb_name = self.model_name + "sent_embedding"

        # Initialize all weigths by truncated normal initializer, and all biases 
        # will be initialized by constant zero by default.
        self._param_initializer = fluid.initializer.TruncatedNormal(
            scale=config["initializer_range"])

    def build_model(self, reader_input, use_fp16=False):
        
        dtype = "float16" if use_fp16 else "float32"

        src_ids, pos_ids, sent_ids, input_mask = reader_input[:4]
        # padding id in vocabulary must be set to 0
        emb_out = fluid.layers.embedding(
            input=src_ids,
            size=[self._voc_size, self._emb_size],
            dtype=dtype,
            param_attr=fluid.ParamAttr(
                name=self._word_emb_name, initializer=self._param_initializer),
            is_sparse=False)
        
        self.emb_out = emb_out
        
        position_emb_out = fluid.layers.embedding(
            input=pos_ids,
            size=[self._max_position_seq_len, self._emb_size],
            dtype=dtype,
            param_attr=fluid.ParamAttr(
                name=self._pos_emb_name, initializer=self._param_initializer))
    
        self.position_emb_out = position_emb_out

        sent_emb_out = fluid.layers.embedding(
            sent_ids,
            size=[self._sent_types, self._emb_size],
            dtype=dtype,
            param_attr=fluid.ParamAttr(
                name=self._sent_emb_name, initializer=self._param_initializer))

        self.sent_emb_out = sent_emb_out

        emb_out = emb_out + position_emb_out + sent_emb_out

        emb_out = transformer.pre_process_layer(
            emb_out, 'nd', self._prepostprocess_dropout, name='pre_encoder')

        if dtype == "float16":
            input_mask = fluid.layers.cast(x=input_mask, dtype=dtype)

        self_attn_mask = fluid.layers.matmul(
            x = input_mask, y = input_mask, transpose_y = True)

        self_attn_mask = fluid.layers.scale(
            x = self_attn_mask, scale = 10000.0, bias = -1.0, bias_after_scale = False)
        
        n_head_self_attn_mask = fluid.layers.stack(
            x=[self_attn_mask] * self._n_head, axis=1)
        
        n_head_self_attn_mask.stop_gradient = True

        self._enc_out = transformer.encoder(
            enc_input = emb_out,
            attn_bias = n_head_self_attn_mask,
            n_layer = self._n_layer,
            n_head = self._n_head,
            d_key = self._emb_size // self._n_head,
            d_value = self._emb_size // self._n_head,
            d_model = self._emb_size,
            d_inner_hid = self._emb_size * 4,
            prepostprocess_dropout = self._prepostprocess_dropout,
            attention_dropout = self._attention_dropout,
            relu_dropout = 0,
            hidden_act = self._hidden_act,
            preprocess_cmd = "",
            postprocess_cmd = "dan",
            param_initializer = self._param_initializer,
            name = self.model_name + 'encoder')

        next_sent_feat = fluid.layers.slice(
            input = self._enc_out, axes = [1], starts = [0], ends = [1])
        self.next_sent_feat = fluid.layers.fc(
            input = next_sent_feat,
            size = self._emb_size,
            act = "tanh",
            param_attr = fluid.ParamAttr(
                name = self.model_name + "pooled_fc.w_0", 
                initializer = self._param_initializer),
            bias_attr = "pooled_fc.b_0")
    @property
    def final_word_representation(self):
        """final layer output of transformer encoder as the (contextual) word representation"""
        return self._enc_out

    @property
    def final_sentence_representation(self):
        """final representation of the first token ([CLS]) as sentence representation """

        return self.next_sent_feat


if __name__ == "__main__":
    print("hello world!")