mrc.py 19.6 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
from paddlepalm.interface import task_paradigm
import collections
import numpy as np
import os
import math
import six
import paddlepalm.tokenizer.ernie_tokenizer as tokenization
import json

RawResult = collections.namedtuple("RawResult",
                                   ["unique_id", "start_logits", "end_logits"])

class TaskParadigm(task_paradigm):
    """"""

    def __init__(self, config, phase, backbone_config=None):
        
        self._is_training = phase == 'train'
        self._max_sequence_length = config['max_seq_len']
        self._hidden_size = backbone_config['hidden_size']
        self._pred_results = []
        
        if phase == 'pred':
            self._max_answer_length = config.get('max_answer_len', None)
            self._null_score_diff_threshold = config.get('null_score_diff_threshold', 0.0)
            self._n_best_size = config.get('n_best_size', 20)
            self._pred_output_path = config.get('pred_output_path', None)
            self._verbose = config.get('verbose', False)
            self._with_negative = config.get('with_negative', False)
            self._do_lower_case = config.get('do_lower_case', False)


    @property
    def inputs_attrs(self):
        if self._is_training:
            reader = {"start_positions": [[-1, 1], 'int64'],
X
xixiaoyao 已提交
53 54
                      "end_positions": [[-1, 1], 'int64'],
                      }
X
xixiaoyao 已提交
55 56 57 58 59 60 61 62 63 64 65 66 67 68
        else:
            reader = {'unique_ids': [[-1, 1], 'int64']}
        bb = {"encoder_outputs": [[-1, -1, self._hidden_size], 'float32']}
        return {'reader': reader, 'backbone': bb}
        
    @property
    def epoch_inputs_attrs(self):
        if not self._is_training:
            from_reader = {'examples': None, 'features': None}
            return {'reader': from_reader}

    @property
    def outputs_attr(self):
        if self._is_training:
X
xixiaoyao 已提交
69
            return {'loss': [[1], 'float32']}
X
xixiaoyao 已提交
70 71 72 73 74 75 76 77 78 79
        else:
            return {'start_logits': [[-1, -1, 1], 'float32'],
                    'end_logits': [[-1, -1, 1], 'float32'],
                    'unique_ids': [[-1, 1], 'int64']}


    def build(self, inputs):
        if self._is_training:
            start_positions = inputs['reader']['start_positions']
            end_positions = inputs['reader']['end_positions']
X
xixiaoyao 已提交
80 81 82
            seqlen = inputs["reader"]["seqlen"] 
            start_positions = fluid.layers.elementwise_min(start_positions, seqlen)
            end_positions = fluid.layers.elementwise_min(end_positions, seqlen)
X
xixiaoyao 已提交
83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
        else:
            unique_id = inputs['reader']['unique_ids']

        enc_out = inputs['backbone']['encoder_outputs']
        logits = fluid.layers.fc(
            input=enc_out,
            size=2,
            num_flatten_dims=2,
            param_attr=fluid.ParamAttr(
                name="cls_squad_out_w",
                initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
            bias_attr=fluid.ParamAttr(
                name="cls_squad_out_b", initializer=fluid.initializer.Constant(0.)))

        logits = fluid.layers.transpose(x=logits, perm=[2, 0, 1])
        start_logits, end_logits = fluid.layers.unstack(x=logits, axis=0)

        def _compute_single_loss(logits, positions):
            """Compute start/end loss for mrc model"""
            loss = fluid.layers.softmax_with_cross_entropy(
                logits=logits, label=positions)
            loss = fluid.layers.mean(x=loss)
            return loss

        if self._is_training:
            start_loss = _compute_single_loss(start_logits, start_positions)
            end_loss = _compute_single_loss(end_logits, end_positions)
            total_loss = (start_loss + end_loss) / 2.0
X
xixiaoyao 已提交
111
            return {'loss': total_loss}
X
xixiaoyao 已提交
112 113 114 115 116 117
        else:
            return {'start_logits': start_logits,
                    'end_logits': end_logits,
                    'unique_ids': unique_id}


X
xixiaoyao 已提交
118
    def postprocess(self, rt_outputs):
X
xixiaoyao 已提交
119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490
        """this func will be called after each step(batch) of training/evaluating/predicting process."""
        if not self._is_training:
            unique_ids = np.squeeze(rt_outputs['unique_ids'], -1)
            start_logits = rt_outputs['start_logits']
            end_logits = rt_outputs['end_logits']
            for idx in range(len(unique_ids)):
                
                if unique_ids[idx] < 0:
                    continue
                if len(self._pred_results) % 1000 == 0:
                    print("Predicting example: {}".format(len(self._pred_results)))
                uid = int(unique_ids[idx])

                s = [float(x) for x in start_logits[idx].flat]
                e = [float(x) for x in end_logits[idx].flat]
                self._pred_results.append(
                    RawResult(
                        unique_id=uid,
                        start_logits=s,
                        end_logits=e))

    def epoch_postprocess(self, post_inputs):
        """(optional interface) this func will be called after evaluation/predicting process and each epoch during training process."""

        if not self._is_training:
            if self._pred_output_path is None:
                raise ValueError('argument pred_output_path not found in config. Please add it into config dict/file.')
            examples = post_inputs['reader']['examples']
            features = post_inputs['reader']['features']
            if not os.path.exists(self._pred_output_path):
                os.makedirs(self._pred_output_path)
            output_prediction_file = os.path.join(self._pred_output_path, "predictions.json")
            output_nbest_file = os.path.join(self._pred_output_path, "nbest_predictions.json")
            output_null_log_odds_file = os.path.join(self._pred_output_path, "null_odds.json")
            _write_predictions(examples, features, self._pred_results,
                              self._n_best_size, self._max_answer_length,
                              self._do_lower_case, output_prediction_file,
                              output_nbest_file, output_null_log_odds_file,
                              self._with_negative,
                              self._null_score_diff_threshold, self._verbose)


def _write_predictions(all_examples, all_features, all_results, n_best_size,
                      max_answer_length, do_lower_case, output_prediction_file,
                      output_nbest_file, output_null_log_odds_file,
                      with_negative, null_score_diff_threshold,
                      verbose):
    """Write final predictions to the json file and log-odds of null if needed."""
    print("Writing predictions to: %s" % (output_prediction_file))
    print("Writing nbest to: %s" % (output_nbest_file))

    example_index_to_features = collections.defaultdict(list)
    for feature in all_features:
        example_index_to_features[feature.example_index].append(feature)

    unique_id_to_result = {}
    for result in all_results:
        unique_id_to_result[result.unique_id] = result

    _PrelimPrediction = collections.namedtuple(  # pylint: disable=invalid-name
        "PrelimPrediction", [
            "feature_index", "start_index", "end_index", "start_logit",
            "end_logit"
        ])

    all_predictions = collections.OrderedDict()
    all_nbest_json = collections.OrderedDict()
    scores_diff_json = collections.OrderedDict()

    for (example_index, example) in enumerate(all_examples):
        features = example_index_to_features[example_index]

        prelim_predictions = []
        # keep track of the minimum score of null start+end of position 0
        score_null = 1000000  # large and positive
        min_null_feature_index = 0  # the paragraph slice with min mull score
        null_start_logit = 0  # the start logit at the slice with min null score
        null_end_logit = 0  # the end logit at the slice with min null score
        for (feature_index, feature) in enumerate(features):
            result = unique_id_to_result[feature.unique_id]
            start_indexes = _get_best_indexes(result.start_logits, n_best_size)
            end_indexes = _get_best_indexes(result.end_logits, n_best_size)
            # if we could have irrelevant answers, get the min score of irrelevant
            if with_negative:
                feature_null_score = result.start_logits[0] + result.end_logits[
                    0]
                if feature_null_score < score_null:
                    score_null = feature_null_score
                    min_null_feature_index = feature_index
                    null_start_logit = result.start_logits[0]
                    null_end_logit = result.end_logits[0]
            for start_index in start_indexes:
                for end_index in end_indexes:
                    # We could hypothetically create invalid predictions, e.g., predict
                    # that the start of the span is in the question. We throw out all
                    # invalid predictions.
                    if start_index >= len(feature.tokens):
                        continue
                    if end_index >= len(feature.tokens):
                        continue
                    if start_index not in feature.token_to_orig_map:
                        continue
                    if end_index not in feature.token_to_orig_map:
                        continue
                    if not feature.token_is_max_context.get(start_index, False):
                        continue
                    if end_index < start_index:
                        continue
                    length = end_index - start_index + 1
                    if length > max_answer_length:
                        continue
                    prelim_predictions.append(
                        _PrelimPrediction(
                            feature_index=feature_index,
                            start_index=start_index,
                            end_index=end_index,
                            start_logit=result.start_logits[start_index],
                            end_logit=result.end_logits[end_index]))

        if with_negative:
            prelim_predictions.append(
                _PrelimPrediction(
                    feature_index=min_null_feature_index,
                    start_index=0,
                    end_index=0,
                    start_logit=null_start_logit,
                    end_logit=null_end_logit))
        prelim_predictions = sorted(
            prelim_predictions,
            key=lambda x: (x.start_logit + x.end_logit),
            reverse=True)

        _NbestPrediction = collections.namedtuple(  # pylint: disable=invalid-name
            "NbestPrediction", ["text", "start_logit", "end_logit"])

        seen_predictions = {}
        nbest = []
        for pred in prelim_predictions:
            if len(nbest) >= n_best_size:
                break
            feature = features[pred.feature_index]
            if pred.start_index > 0:  # this is a non-null prediction
                tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1
                                                              )]
                orig_doc_start = feature.token_to_orig_map[pred.start_index]
                orig_doc_end = feature.token_to_orig_map[pred.end_index]
                orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end +
                                                                 1)]
                tok_text = " ".join(tok_tokens)

                # De-tokenize WordPieces that have been split off.
                tok_text = tok_text.replace(" ##", "")
                tok_text = tok_text.replace("##", "")

                # Clean whitespace
                tok_text = tok_text.strip()
                tok_text = " ".join(tok_text.split())
                orig_text = " ".join(orig_tokens)

                final_text = _get_final_text(tok_text, orig_text, do_lower_case,
                                            verbose)
                if final_text in seen_predictions:
                    continue

                seen_predictions[final_text] = True
            else:
                final_text = ""
                seen_predictions[final_text] = True

            nbest.append(
                _NbestPrediction(
                    text=final_text,
                    start_logit=pred.start_logit,
                    end_logit=pred.end_logit))

        # if we didn't inlude the empty option in the n-best, inlcude it
        if with_negative:
            if "" not in seen_predictions:
                nbest.append(
                    _NbestPrediction(
                        text="",
                        start_logit=null_start_logit,
                        end_logit=null_end_logit))
        # In very rare edge cases we could have no valid predictions. So we
        # just create a nonce prediction in this case to avoid failure.
        if not nbest:
            nbest.append(
                _NbestPrediction(
                    text="empty", start_logit=0.0, end_logit=0.0))

        assert len(nbest) >= 1

        total_scores = []
        best_non_null_entry = None
        for entry in nbest:
            total_scores.append(entry.start_logit + entry.end_logit)
            if not best_non_null_entry:
                if entry.text:
                    best_non_null_entry = entry
        # debug
        if best_non_null_entry is None:
            print("Emmm..., sth wrong")

        probs = _compute_softmax(total_scores)

        nbest_json = []
        for (i, entry) in enumerate(nbest):
            output = collections.OrderedDict()
            output["text"] = entry.text
            output["probability"] = probs[i]
            output["start_logit"] = entry.start_logit
            output["end_logit"] = entry.end_logit
            nbest_json.append(output)

        assert len(nbest_json) >= 1

        if not with_negative:
            all_predictions[example.qas_id] = nbest_json[0]["text"]
        else:
            # predict "" iff the null score - the score of best non-null > threshold
            score_diff = score_null - best_non_null_entry.start_logit - (
                best_non_null_entry.end_logit)
            scores_diff_json[example.qas_id] = score_diff
            if score_diff > null_score_diff_threshold:
                all_predictions[example.qas_id] = ""
            else:
                all_predictions[example.qas_id] = best_non_null_entry.text

        all_nbest_json[example.qas_id] = nbest_json

    with open(output_prediction_file, "w") as writer:
        writer.write(json.dumps(all_predictions, indent=4) + "\n")

    with open(output_nbest_file, "w") as writer:
        writer.write(json.dumps(all_nbest_json, indent=4) + "\n")

    if with_negative:
        with open(output_null_log_odds_file, "w") as writer:
            writer.write(json.dumps(scores_diff_json, indent=4) + "\n")


def _get_final_text(pred_text, orig_text, do_lower_case, verbose):
    """Project the tokenized prediction back to the original text."""

    # When we created the data, we kept track of the alignment between original
    # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So
    # now `orig_text` contains the span of our original text corresponding to the
    # span that we predicted.
    #
    # However, `orig_text` may contain extra characters that we don't want in
    # our prediction.
    #
    # For example, let's say:
    #   pred_text = steve smith
    #   orig_text = Steve Smith's
    #
    # We don't want to return `orig_text` because it contains the extra "'s".
    #
    # We don't want to return `pred_text` because it's already been normalized
    # (the MRQA eval script also does punctuation stripping/lower casing but
    # our tokenizer does additional normalization like stripping accent
    # characters).
    #
    # What we really want to return is "Steve Smith".
    #
    # Therefore, we have to apply a semi-complicated alignment heruistic between
    # `pred_text` and `orig_text` to get a character-to-charcter alignment. This
    # can fail in certain cases in which case we just return `orig_text`.

    def _strip_spaces(text):
        ns_chars = []
        ns_to_s_map = collections.OrderedDict()
        for (i, c) in enumerate(text):
            if c == " ":
                continue
            ns_to_s_map[len(ns_chars)] = i
            ns_chars.append(c)
        ns_text = "".join(ns_chars)
        return (ns_text, ns_to_s_map)

    # We first tokenize `orig_text`, strip whitespace from the result
    # and `pred_text`, and check if they are the same length. If they are
    # NOT the same length, the heuristic has failed. If they are the same
    # length, we assume the characters are one-to-one aligned.
    tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case)

    tok_text = " ".join(tokenizer.tokenize(orig_text))

    start_position = tok_text.find(pred_text)
    if start_position == -1:
        if verbose:
            print("Unable to find text: '%s' in '%s'" % (pred_text, orig_text))
        return orig_text
    end_position = start_position + len(pred_text) - 1

    (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text)
    (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text)

    if len(orig_ns_text) != len(tok_ns_text):
        if verbose:
            print("Length not equal after stripping spaces: '%s' vs '%s'",
                  orig_ns_text, tok_ns_text)
        return orig_text

    # We then project the characters in `pred_text` back to `orig_text` using
    # the character-to-character alignment.
    tok_s_to_ns_map = {}
    for (i, tok_index) in six.iteritems(tok_ns_to_s_map):
        tok_s_to_ns_map[tok_index] = i

    orig_start_position = None
    if start_position in tok_s_to_ns_map:
        ns_start_position = tok_s_to_ns_map[start_position]
        if ns_start_position in orig_ns_to_s_map:
            orig_start_position = orig_ns_to_s_map[ns_start_position]

    if orig_start_position is None:
        if verbose:
            print("Couldn't map start position")
        return orig_text

    orig_end_position = None
    if end_position in tok_s_to_ns_map:
        ns_end_position = tok_s_to_ns_map[end_position]
        if ns_end_position in orig_ns_to_s_map:
            orig_end_position = orig_ns_to_s_map[ns_end_position]

    if orig_end_position is None:
        if verbose:
            print("Couldn't map end position")
        return orig_text

    output_text = orig_text[orig_start_position:(orig_end_position + 1)]
    return output_text


def _get_best_indexes(logits, n_best_size):
    """Get the n-best logits from a list."""
    index_and_score = sorted(
        enumerate(logits), key=lambda x: x[1], reverse=True)

    best_indexes = []
    for i in range(len(index_and_score)):
        if i >= n_best_size:
            break
        best_indexes.append(index_and_score[i][0])
    return best_indexes


def _compute_softmax(scores):
    """Compute softmax probability over raw logits."""
    if not scores:
        return []

    max_score = None
    for score in scores:
        if max_score is None or score > max_score:
            max_score = score

    exp_scores = []
    total_sum = 0.0
    for score in scores:
        x = math.exp(score - max_score)
        exp_scores.append(x)
        total_sum += x

    probs = []
    for score in exp_scores:
        probs.append(score / total_sum)
    return probs