mrc.py 4.6 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddlepalm.interface import reader
from paddlepalm.reader.utils.reader4ernie import MRCReader

class Reader(reader):
    
    def __init__(self, config, phase='train', dev_count=1, print_prefix=''):
        """
        Args:
            phase: train, eval, pred
            """

        self._is_training = phase == 'train'

        reader = MRCReader(config['vocab_path'],
            max_seq_len=config['max_seq_len'],
            do_lower_case=config.get('do_lower_case', False),
            tokenizer='FullTokenizer',
X
xixiaoyao 已提交
33
            for_cn=config.get('for_cn', False),
X
xixiaoyao 已提交
34
            doc_stride=config['doc_stride'],
X
Xiaoyao Xi 已提交
35
            remove_noanswer=config.get('remove_noanswer', True),
X
xixiaoyao 已提交
36 37 38 39 40 41 42 43 44 45 46
            max_query_length=config['max_query_len'],
            random_seed=config.get('seed', None))
        self._reader = reader
        self._dev_count = dev_count

        self._batch_size = config['batch_size']
        self._max_seq_len = config['max_seq_len']
        if phase == 'train':
            self._input_file = config['train_file']
            # self._num_epochs = config['num_epochs']
            self._num_epochs = None # 防止iteartor终止
X
xixiaoyao 已提交
47
            self._shuffle = config.get('shuffle', True)
X
xixiaoyao 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120
            self._shuffle_buffer = config.get('shuffle_buffer', 5000)
        if phase == 'eval':
            self._input_file = config['dev_file']
            self._num_epochs = 1
            self._shuffle = False
            self._batch_size = config.get('pred_batch_size', self._batch_size)
        elif phase == 'pred':
            self._input_file = config['pred_file']
            self._num_epochs = 1
            self._shuffle = False
            self._batch_size = config.get('pred_batch_size', self._batch_size)

        self._phase = phase
        # self._batch_size = 
        self._print_first_n = config.get('print_first_n', 1)

        # TODO: without slide window version
        self._with_slide_window = config.get('with_slide_window', False)


    @property
    def outputs_attr(self):
        if self._is_training:
            return {"token_ids": [[-1, -1, 1], 'int64'],
                    "position_ids": [[-1, -1, 1], 'int64'],
                    "segment_ids": [[-1, -1, 1], 'int64'],
                    "input_mask": [[-1, -1, 1], 'float32'],
                    "start_positions": [[-1, 1], 'int64'],
                    "end_positions": [[-1, 1], 'int64'],
                    "task_ids": [[-1, -1, 1], 'int64']
                    }
        else:
            return {"token_ids": [[-1, -1, 1], 'int64'],
                    "position_ids": [[-1, -1, 1], 'int64'],
                    "segment_ids": [[-1, -1, 1], 'int64'],
                    "task_ids": [[-1, -1, 1], 'int64'],
                    "input_mask": [[-1, -1, 1], 'float32'],
                    "unique_ids": [[-1, 1], 'int64']
                    }

    @property
    def epoch_outputs_attr(self):
        if not self._is_training:
            return {"examples": None,
                    "features": None}

    def load_data(self):
        self._data_generator = self._reader.data_generator(self._input_file, self._batch_size, self._num_epochs, dev_count=self._dev_count, shuffle=self._shuffle, phase=self._phase)

    def iterator(self): 

        def list_to_dict(x):
            names = ['token_ids', 'segment_ids', 'position_ids', 'task_ids', 'input_mask', 
                'start_positions', 'end_positions', 'unique_ids']
            outputs = {n: i for n,i in zip(names, x)}
            if self._is_training:
                del outputs['unique_ids']
            else:
                del outputs['start_positions']
                del outputs['end_positions']
            return outputs

        for batch in self._data_generator():
            yield list_to_dict(batch)

    def get_epoch_outputs(self):
        return {'examples': self._reader.get_examples(self._phase),
                'features': self._reader.get_features(self._phase)}

    @property
    def num_examples(self):
        return self._reader.get_num_examples(phase=self._phase)