mask_language_model.py 3.1 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
from backbone.utils.transformer import pre_process_layer
from utils.configure import JsonConfig


def compute_loss(output_tensors, args=None):
    """Compute loss for mlm model"""
    fc_out = output_tensors['mlm_out']
    mask_label = output_tensors['mask_label']
    mask_lm_loss = fluid.layers.softmax_with_cross_entropy(
        logits=fc_out, label=mask_label)
    mean_mask_lm_loss = fluid.layers.mean(mask_lm_loss)
    return mean_mask_lm_loss


def create_model(reader_input, base_model=None, is_training=True, args=None):
    """
        given the base model, reader_input
        return the output tensors
    """

    src_ids, pos_ids, sent_ids, input_mask, mask_label, mask_pos = reader_input

    config = JsonConfig(args.pretrain_config_path)

    _emb_size = config['hidden_size']
    _voc_size = config['vocab_size']
    _hidden_act = config['hidden_act']

    _word_emb_name = "word_embedding"
X
xixiaoyao 已提交
45
    _dtype = "float32"
X
xixiaoyao 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95

    _param_initializer = fluid.initializer.TruncatedNormal(
        scale=config['initializer_range'])

    mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')

    enc_out = base_model.final_word_representation

    # extract the first token feature in each sentence
    reshaped_emb_out = fluid.layers.reshape(
        x=enc_out, shape=[-1, _emb_size])
    # extract masked tokens' feature
    mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
    num_seqs = fluid.layers.fill_constant(shape=[1], value=512, dtype='int64')

    # transform: fc
    mask_trans_feat = fluid.layers.fc(
        input=mask_feat,
        size=_emb_size,
        act=_hidden_act,
        param_attr=fluid.ParamAttr(
            name='mask_lm_trans_fc.w_0',
            initializer=_param_initializer),
        bias_attr=fluid.ParamAttr(name='mask_lm_trans_fc.b_0'))
    # transform: layer norm
    mask_trans_feat = pre_process_layer(
        mask_trans_feat, 'n', name='mask_lm_trans')

    mask_lm_out_bias_attr = fluid.ParamAttr(
        name="mask_lm_out_fc.b_0",
        initializer=fluid.initializer.Constant(value=0.0))

    fc_out = fluid.layers.matmul(
        x=mask_trans_feat,
        y=fluid.default_main_program().global_block().var(
            _word_emb_name),
        transpose_y=True)
    fc_out += fluid.layers.create_parameter(
        shape=[_voc_size],
        dtype=_dtype,
        attr=mask_lm_out_bias_attr,
        is_bias=True)

    output_tensors = {}
    output_tensors['num_seqs'] = num_seqs
    output_tensors['mlm_out'] = fc_out
    output_tensors['mask_label'] = mask_label

    return output_tensors