reader_helper.py 12.7 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import os
import sys
import random
W
wangxiao1021 已提交
19
import logging
X
xixiaoyao 已提交
20 21 22 23 24 25
import numpy as np
import paddle
from paddle import fluid
from paddle.fluid import layers


X
xixiaoyao 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38
def create_feed_batch_process_fn(net_inputs):

    def feed_batch_process_fn(data):
        temp = {}
        for q, var in net_inputs.items():
            if isinstance(var, str) or isinstance(var, unicode):
                temp[var] = data[q]
            else:
                temp[var.name] = data[q]
        return temp

    return feed_batch_process_fn

W
wangxiao1021 已提交
39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69

# def create_multihead_feed_batch_process_fn(net_inputs):
# 
#     def feed_batch_process_fn(data, id=-1):
#         # temps = {}
#         # for i in range(len(net_inputs)):
#         temp = {}
#         inputs = net_inputs[id] if id != -1 else net_inputs
#         
#         for q, var in inputs.items():
#             if isinstance(var, str) or isinstance(var, unicode):
#                 temp[var] = data[q]
#             else:
#                 temp[var.name] = data[q]
#             # temps[i] = temp
#             
#         return temp
# 
#     return feed_batch_process_fn


def check_io(in_attr, out_attr, strict=False, in_name="left", out_name="right"):
    for name, attr in in_attr.items():
        assert name in out_attr, in_name+': '+name+' not found in '+out_name
        if attr != out_attr[name]:
            if strict:
                raise ValueError(name+': shape or dtype not consistent!')
            else:
                logging.warning('{}: shape or dtype not consistent!\n{}:\n{}\n{}:\n{}'.format(name, in_name, attr, out_name, out_attr[name]))


X
xixiaoyao 已提交
70
def _check_and_adapt_shape_dtype(rt_val, attr, message=""):
X
xixiaoyao 已提交
71
    if not isinstance(rt_val, np.ndarray):
W
wangxiao1021 已提交
72 73
        if rt_val is None:
            raise Exception(message+": get None value. ")
X
xixiaoyao 已提交
74
        rt_val = np.array(rt_val)
W
wangxiao1021 已提交
75
        assert rt_val.dtype != np.dtype('O'), message+"yielded data is not a valid tensor (number of elements on some dimension may not consistent): {}".format(rt_val)
X
xixiaoyao 已提交
76 77 78 79
        if rt_val.dtype == np.dtype('float64'):
            rt_val = rt_val.astype('float32')
    
    shape, dtype = attr
X
xixiaoyao 已提交
80 81
    assert rt_val.dtype == np.dtype(dtype), message+"yielded data type not consistent with attr settings. Expect: {}, receive: {}.".format(rt_val.dtype, np.dtype(dtype))
    assert len(shape) == rt_val.ndim, message+"yielded data rank(ndim) not consistent with attr settings. Expect: {}, receive: {}.".format(len(shape), rt_val.ndim)
X
xixiaoyao 已提交
82 83 84
    for rt, exp in zip(rt_val.shape, shape):
        if exp is None or exp < 0:
            continue
X
xixiaoyao 已提交
85
        assert rt == exp, "yielded data shape is not consistent with attr settings.Expected:{}Actual:{}".format(exp, rt)
X
xixiaoyao 已提交
86 87 88 89 90 91 92 93 94 95 96 97
    return rt_val
    

def _zero_batch(attrs):
    pos_attrs = []
    for shape, dtype in attrs:
        pos_shape = [size if size and size > 0 else 1 for size in shape]
        pos_attrs.append([pos_shape, dtype])

    return [np.zeros(shape=shape, dtype=dtype) for shape, dtype in pos_attrs]


X
xixiaoyao 已提交
98 99 100 101 102 103 104 105 106 107 108 109 110
def _zero_batch_x(attrs, batch_size):
    pos_attrs = []
    for shape, dtype in attrs:
        pos_shape = [size for size in shape]
        if pos_shape[0] == -1:
            pos_shape[0] = batch_size
        if pos_shape[1] == -1:
            pos_shape[1] = 512 # max seq len
        pos_attrs.append([pos_shape, dtype])

    return [np.zeros(shape=shape, dtype=dtype) for shape, dtype in pos_attrs]


X
xixiaoyao 已提交
111 112 113 114 115 116 117 118 119 120
def create_net_inputs(input_attrs, async=False, iterator_fn=None, dev_count=1, n_prefetch=1):
    inputs = []
    ret = {}
    for name, shape, dtype in input_attrs:
        p = layers.data(name, shape=shape, dtype=dtype)
        ret[name] = p
        inputs.append(p)

    if async:
        assert iterator_fn is not None, "iterator_fn is needed for building async input layer."
X
xixiaoyao 已提交
121
        reader = fluid.io.PyReader(inputs, capacity=dev_count, iterable=False)
X
xixiaoyao 已提交
122 123 124 125 126 127
        reader.decorate_batch_generator(iterator_fn)
        reader.start()

    return ret


X
xixiaoyao 已提交
128
def create_iterator_fn(iterator, iterator_prefix, shape_and_dtypes, outname_to_pos, verbose=0, return_type='list'):
X
xixiaoyao 已提交
129

X
xixiaoyao 已提交
130 131 132
    pos_to_outname = {j:i for i,j in outname_to_pos.items()}
    
    def iterator_fn():
X
xixiaoyao 已提交
133 134
        v = verbose
        while True:
X
xixiaoyao 已提交
135 136
            # results = _zero_batch(shape_and_dtypes)
            results = [None] * len(outname_to_pos)
X
xixiaoyao 已提交
137 138

            outputs = next(iterator) # dict type
X
xixiaoyao 已提交
139
            prefix = iterator_prefix
X
xixiaoyao 已提交
140
            for outname, val in outputs.items():
X
xixiaoyao 已提交
141
                task_outname = prefix + '.' + outname
X
xixiaoyao 已提交
142 143 144

                if outname in outname_to_pos:
                    idx = outname_to_pos[outname]
X
xixiaoyao 已提交
145
                    val = _check_and_adapt_shape_dtype(val, shape_and_dtypes[idx])
X
xixiaoyao 已提交
146 147 148 149
                    results[idx] = val

                if task_outname in outname_to_pos:
                    idx = outname_to_pos[task_outname]
X
xixiaoyao 已提交
150
                    val = _check_and_adapt_shape_dtype(val, shape_and_dtypes[idx])
X
xixiaoyao 已提交
151
                    results[idx] = val
X
xixiaoyao 已提交
152 153 154 155 156 157
            if return_type == 'list':
                yield results
            elif return_type == 'dict':
                temp = {}
                for pos, i in enumerate(results):
                    temp[pos_to_outname[pos]] = i
X
xixiaoyao 已提交
158

X
xixiaoyao 已提交
159
                yield temp
X
xixiaoyao 已提交
160

X
xixiaoyao 已提交
161
    return iterator_fn
X
xixiaoyao 已提交
162

W
wangxiao1021 已提交
163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197
def create_multihead_iterator_fn(iterators, iterator_prefixes, joint_shape_and_dtypes, mrs, names, outname_to_pos, dev_count=1, keep_one_task=True):
    task_ids = range(len(iterators))
    weights = [mr / float(sum(mrs)) for mr in mrs]
    if not keep_one_task:
        dev_count = 1

    def iterator():
        while True:
            id = np.random.choice(task_ids, p=weights)
            task_id_tensor = np.array([id]).astype("int64")
            
            for i in range(dev_count):
                
                outputs = next(iterators[id]) # dict type

                prefix = iterator_prefixes[id]
                results = {}
                results['__task_id'] = task_id_tensor
                for outname, val in outputs.items():
                    task_outname = prefix + '.' + outname

                    if outname in names[id]:
                        idx = outname_to_pos[id][outname]
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[id][idx], message=outname+': ')
                        results[outname] = val

                    if task_outname in names[id]:
                        idx = outname_to_pos[id][task_outname]
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[id][idx], message=task_outname+': ')
                        results[task_outname] = val

                yield results

    return iterator

X
xixiaoyao 已提交
198

X
xixiaoyao 已提交
199
def create_joint_iterator_fn(iterators, iterator_prefixes, joint_shape_and_dtypes, mrs, outname_to_pos, dev_count=1, keep_one_task=True, verbose=0):
X
xixiaoyao 已提交
200 201 202
    """
        joint_shape_and_dtypes: 本质上是根据bb和parad的attr设定的,并且由reader中的attr自动填充-1(可变)维度得到,因此通过与iterator的校验可以完成runtime的batch正确性检查
    """
X
xixiaoyao 已提交
203

X
xixiaoyao 已提交
204 205 206 207 208 209 210 211 212 213 214 215
    task_ids = range(len(iterators))
    weights = [mr / float(sum(mrs)) for mr in mrs]
    if not keep_one_task:
        dev_count = 1

    results = _zero_batch(joint_shape_and_dtypes)
    outbuf = {}
    for id in task_ids:
        outputs = next(iterators[id]) # dict type
        outbuf[id] = outputs
        prefix = iterator_prefixes[id]
        for outname, val in outputs.items():
X
xixiaoyao 已提交
216
            task_outname = prefix + '.' + outname
X
xixiaoyao 已提交
217 218 219

            if outname in outname_to_pos:
                idx = outname_to_pos[outname]
X
xixiaoyao 已提交
220
                val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=outname+': ')
X
xixiaoyao 已提交
221 222 223 224
                results[idx] = val

            if task_outname in outname_to_pos:
                idx = outname_to_pos[task_outname]
X
xixiaoyao 已提交
225
                val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=task_outname+': ')
X
xixiaoyao 已提交
226 227 228 229 230 231 232
                results[idx] = val

    fake_batch = results
    dev_count_bak = dev_count

    def iterator():
        v = verbose
X
xixiaoyao 已提交
233
        has_show_warn = False
X
xixiaoyao 已提交
234 235 236 237 238 239 240 241 242
        while True:
            id = np.random.choice(task_ids, p=weights)
            results = fake_batch
            if v > 0:
                print('----- debug joint iterator -----')
                print('sampled task id: '+str(id))
            task_id_tensor = np.array([[id]]).astype("int64")
            
            for i in range(dev_count):
X
xixiaoyao 已提交
243 244 245 246
                
                results[outname_to_pos['__task_id']] = task_id_tensor
                assert outname_to_pos['__task_id'] == 0

X
xixiaoyao 已提交
247 248 249 250 251 252
                if id in outbuf:
                    outputs = outbuf[id]
                    del outbuf[id]
                else:
                    outputs = next(iterators[id]) # dict type

X
xixiaoyao 已提交
253 254 255 256 257 258 259 260 261 262 263 264 265 266 267
                if 'token_ids' in outputs:
                    val1 = len(outputs['token_ids'])
                    val = _check_and_adapt_shape_dtype([val1], [[1], 'int64'])
                    results[outname_to_pos['batch_size']] = val

                    val2 = len(outputs['token_ids'][0])
                    val = _check_and_adapt_shape_dtype([val2], [[1], 'int64'])
                    results[outname_to_pos['seqlen']] = val

                    val = _check_and_adapt_shape_dtype([val1*val2], [[1], 'int64'])
                    results[outname_to_pos['batchsize_x_seqlen']] = val
                else:
                    if not has_show_warn:
                        print('WARNING: token_ids not found in current batch, failed to yield batch_size, seqlen and batchsize_x_seqlen. (This message would be shown only once.)')
                        has_show_warn = True
X
xixiaoyao 已提交
268

X
xixiaoyao 已提交
269 270 271 272
                prefix = iterator_prefixes[id]
                for outname, val in outputs.items():
                    if v > 0:
                        print('reader generate: '+outname)
X
xixiaoyao 已提交
273
                    task_outname = prefix + '.' + outname
X
xixiaoyao 已提交
274 275 276 277 278

                    if outname in outname_to_pos:
                        idx = outname_to_pos[outname]
                        if v > 0:
                            print(outname + ' is insert in idx ' + str(idx))
X
xixiaoyao 已提交
279
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=outname+': ')
X
xixiaoyao 已提交
280 281 282 283 284 285
                        results[idx] = val

                    if task_outname in outname_to_pos:
                        idx = outname_to_pos[task_outname]
                        if v > 0:
                            print(task_outname + ' is insert in idx ' + str(idx))
X
xixiaoyao 已提交
286
                        val = _check_and_adapt_shape_dtype(val, joint_shape_and_dtypes[idx], message=task_outname+': ')
X
xixiaoyao 已提交
287 288 289 290 291 292 293 294 295 296 297 298 299 300
                        results[idx] = val

                if v > 0:
                    print('yielded batch len and shapes:')
                    print(len(results))
                    for i in results:
                        print(np.shape(i))
                    print('')
                    v -= 1
                yield results

    return iterator


W
wangxiao1021 已提交
301
def merge_input_attrs(backbone_attr, task_attrs, insert_taskid=True, insert_batchsize=False, insert_seqlen=False, insert_batchsize_x_seqlen=False):
X
xixiaoyao 已提交
302 303 304 305 306 307 308
    """
    Args:
        task_attrs(list[dict]|dict): task input attributes, key=attr_name, val=[shape, dtype], support single task and nested tasks
    """
    if isinstance(task_attrs, dict):
        task_attrs = [task_attrs]

X
xixiaoyao 已提交
309 310 311
    ret = []
    names = []
    start = 0
X
xixiaoyao 已提交
312
    if insert_taskid:
W
wangxiao1021 已提交
313
        ret.append(([1, 1], 'int64'))
X
xixiaoyao 已提交
314 315 316 317 318 319 320 321 322 323 324 325 326 327 328
        names.append('__task_id')
        start += 1
    
    if insert_batchsize:
        ret.append(([1], 'int64'))
        names.append('batch_size')
        start += 1

    if insert_seqlen:
        ret.append(([1], 'int64'))
        names.append('seqlen')
        start += 1

    if insert_batchsize_x_seqlen:
        ret.append(([1], 'int64'))
X
xixiaoyao 已提交
329
        names.append(u'batchsize_x_seqlen')
X
xixiaoyao 已提交
330
        start += 1
X
xixiaoyao 已提交
331 332 333 334 335 336 337 338 339 340 341 342 343 344
        
    names += sorted(backbone_attr.keys())
    ret.extend([backbone_attr[k] for k in names[start:]])
    name_to_position = {}
    # pos=0 is for task_id, thus we start from 1
    for pos, k in enumerate(names):
        name_to_position[k] = pos
    for task_attr in task_attrs:
        task_names = sorted(task_attr.keys())
        names.extend(task_names)
        ret.extend([task_attr[k] for k in task_names])
        for pos, k in enumerate(task_names, start=len(name_to_position)):
            name_to_position[k] = pos
    return names, ret, name_to_position