mlm.py 5.2 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
W
wangxiao1021 已提交
17
from paddlepalm.head.base_head import Head
X
xixiaoyao 已提交
18
from paddle.fluid import layers
W
wangxiao1021 已提交
19 20
import numpy as np
import os
X
xixiaoyao 已提交
21 22
from paddlepalm.backbone.utils.transformer import pre_process_layer

W
wangxiao1021 已提交
23
class MaskLM(Head):
X
xixiaoyao 已提交
24
    '''
W
wangxiao1021 已提交
25
    mlm
X
xixiaoyao 已提交
26
    '''
W
wangxiao1021 已提交
27
    def __init__(self, input_dim, vocab_size, hidden_act, dropout_prob=0.0, \
W
wangxiao1021 已提交
28
                 param_initializer_range=0.02, phase='train'):
X
xixiaoyao 已提交
29
        self._is_training = phase == 'train'
W
wangxiao1021 已提交
30 31 32 33 34 35 36
        self._emb_size = input_dim
        self._hidden_size = input_dim
        self._dropout_prob = dropout_prob if phase == 'train' else 0.0
        self._preds = []

        self._vocab_size = vocab_size
        self._hidden_act = hidden_act
W
wangxiao1021 已提交
37
        self._initializer_range = param_initializer_range
X
xixiaoyao 已提交
38 39 40 41
    
    @property
    def inputs_attrs(self):
        reader = {
W
wangxiao1021 已提交
42 43 44 45
            "token_ids":[[-1, -1], 'int64'],
            "mask_label": [[-1], 'int64'],
            "mask_pos": [[-1], 'int64'],
            }
X
xixiaoyao 已提交
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
        if not self._is_training:
            del reader['mask_label']
        bb = {
            "encoder_outputs": [[-1, -1, self._hidden_size], 'float32'],
            "embedding_table": [[-1, self._vocab_size, self._emb_size], 'float32']}
        return {'reader': reader, 'backbone': bb}

    @property
    def outputs_attrs(self):
        if self._is_training:
            return {"loss": [[1], 'float32']}
        else:
            return {"logits": [[-1], 'float32']}

    def build(self, inputs, scope_name=""):
        mask_pos = inputs["reader"]["mask_pos"]
        if self._is_training:
            mask_label = inputs["reader"]["mask_label"] 
W
wangxiao1021 已提交
64 65 66 67 68 69 70
            l1 = fluid.layers.shape(inputs["reader"]["token_ids"] )[0]
            # bxs = inputs["reader"]["token_ids"].shape[2].value
            l2 = fluid.layers.shape(inputs["reader"]["token_ids"][0])[0]
            bxs = (l1*l2).astype(np.int64)
            # max_position = inputs["reader"]["batchsize_x_seqlen"] - 1
            max_position = bxs - 1

X
xixiaoyao 已提交
71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
            mask_pos = fluid.layers.elementwise_min(mask_pos, max_position)
            mask_pos.stop_gradient = True

        word_emb = inputs["backbone"]["embedding_table"]
        enc_out = inputs["backbone"]["encoder_outputs"]

        emb_size = word_emb.shape[-1]

        _param_initializer = fluid.initializer.TruncatedNormal(
            scale=self._initializer_range)

        reshaped_emb_out = fluid.layers.reshape(
            x=enc_out, shape=[-1, emb_size])

        # extract masked tokens' feature
        mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)

        # transform: fc
        mask_trans_feat = fluid.layers.fc(
            input=mask_feat,
            size=emb_size,
            act=self._hidden_act,
            param_attr=fluid.ParamAttr(
                name=scope_name+'mask_lm_trans_fc.w_0',
                initializer=_param_initializer),
            bias_attr=fluid.ParamAttr(name=scope_name+'mask_lm_trans_fc.b_0'))
        # transform: layer norm
        mask_trans_feat = pre_process_layer(
            mask_trans_feat, 'n', name=scope_name+'mask_lm_trans')

        mask_lm_out_bias_attr = fluid.ParamAttr(
            name=scope_name+"mask_lm_out_fc.b_0",
            initializer=fluid.initializer.Constant(value=0.0))

        fc_out = fluid.layers.matmul(
            x=mask_trans_feat,
            y=word_emb,
            transpose_y=True)
        fc_out += fluid.layers.create_parameter(
            shape=[self._vocab_size],
            dtype='float32',
            attr=mask_lm_out_bias_attr,
            is_bias=True)

        if self._is_training:
W
wangxiao1021 已提交
116 117 118
            inputs = fluid.layers.softmax(fc_out)
            mask_lm_loss = fluid.layers.cross_entropy(
                input=inputs, label=mask_label)
X
xixiaoyao 已提交
119 120 121 122 123
            loss = fluid.layers.mean(mask_lm_loss)
            return {'loss': loss}
        else:
            return {'logits': fc_out}

W
wangxiao1021 已提交
124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142
    def batch_postprocess(self, rt_outputs):
        if not self._is_training:
            logits = rt_outputs['logits']
            preds = np.argmax(logits, -1)
            self._preds.extend(preds.tolist())
            return preds

    def epoch_postprocess(self, post_inputs, output_dir=None):
        # there is no post_inputs needed and not declared in epoch_inputs_attrs, hence no elements exist in post_inputs
        if not self._is_training:
            if output_dir is None:
                for p in self._preds:
                    print(p)
            else:
                with open(os.path.join(output_dir, 'predictions.json'), 'w') as writer:
                    for p in self._preds:
                        writer.write(str(p)+'\n')
                print('Predictions saved at '+os.path.join(output_dir, 'predictions.json'))

X
xixiaoyao 已提交
143