match.py 3.7 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from paddlepalm.interface import reader
from paddlepalm.reader.utils.reader4ernie import ClassifyReader

class Reader(reader):
    
    def __init__(self, config, phase='train', dev_count=1, print_prefix=''):
        """
        Args:
            phase: train, eval, pred
            """

        self._is_training = phase == 'train'

        reader = ClassifyReader(config['vocab_path'],
            max_seq_len=config['max_seq_len'],
X
xixiaoyao 已提交
31
            do_lower_case=config.get('do_lower_case', True),
X
xixiaoyao 已提交
32 33 34 35 36 37 38 39 40 41
            for_cn=config.get('for_cn', False),
            random_seed=config.get('seed', None))
        self._reader = reader
        self._dev_count = dev_count

        self._batch_size = config['batch_size']
        self._max_seq_len = config['max_seq_len']
        if phase == 'train':
            self._input_file = config['train_file']
            self._num_epochs = None # 防止iteartor终止
X
Xiaoyao Xi 已提交
42
            self._shuffle = config.get('shuffle', True)
X
xixiaoyao 已提交
43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99
            self._shuffle_buffer = config.get('shuffle_buffer', 5000)
        elif phase == 'eval':
            self._input_file = config['dev_file']
            self._num_epochs = 1
            self._shuffle = False
            self._batch_size = config.get('pred_batch_size', self._batch_size)
        elif phase == 'pred':
            self._input_file = config['pred_file']
            self._num_epochs = 1
            self._shuffle = False
            self._batch_size = config.get('pred_batch_size', self._batch_size)

        self._phase = phase
        # self._batch_size = 
        self._print_first_n = config.get('print_first_n', 1)


    @property
    def outputs_attr(self):
        if self._is_training:
            return {"token_ids": [[-1, -1, 1], 'int64'],
                    "position_ids": [[-1, -1, 1], 'int64'],
                    "segment_ids": [[-1, -1, 1], 'int64'],
                    "input_mask": [[-1, -1, 1], 'float32'],
                    "label_ids": [[-1,1], 'int64'],
                    "task_ids": [[-1, -1, 1], 'int64']
                    }
        else:
            return {"token_ids": [[-1, -1, 1], 'int64'],
                    "position_ids": [[-1, -1, 1], 'int64'],
                    "segment_ids": [[-1, -1, 1], 'int64'],
                    "task_ids": [[-1, -1, 1], 'int64'],
                    "input_mask": [[-1, -1, 1], 'float32']
                    }


    def load_data(self):
        self._data_generator = self._reader.data_generator(self._input_file, self._batch_size, self._num_epochs, dev_count=self._dev_count, shuffle=self._shuffle, phase=self._phase)

    def iterator(self): 

        def list_to_dict(x):
            names = ['token_ids', 'segment_ids', 'position_ids', 'task_ids', 'input_mask', 
                'label_ids', 'unique_ids']
            outputs = {n: i for n,i in zip(names, x)}
            del outputs['unique_ids']
            if not self._is_training:
                del outputs['label_ids']
            return outputs

        for batch in self._data_generator():
            yield list_to_dict(batch)

    @property
    def num_examples(self):
        return self._reader.get_num_examples(phase=self._phase)