reading_comprehension.py 4.6 KB
Newer Older
X
xixiaoyao 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
X
xixiaoyao 已提交
14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121
# encoding=utf8

import paddle.fluid as fluid
import collections
import os
from paddle.fluid import layers


def compute_loss(output_tensors, args=None):
    """Compute loss for mrc model"""
    def _compute_single_loss(logits, positions):
        """Compute start/end loss for mrc model"""
        loss = fluid.layers.softmax_with_cross_entropy(
            logits=logits, label=positions)
        loss = fluid.layers.mean(x=loss)
        return loss

    start_logits = output_tensors['start_logits']
    end_logits = output_tensors['end_logits']
    start_positions = output_tensors['start_positions']
    end_positions = output_tensors['end_positions']
    start_loss = _compute_single_loss(start_logits, start_positions)
    end_loss = _compute_single_loss(end_logits, end_positions)
    total_loss = (start_loss + end_loss) / 2.0

    return total_loss


def create_model(reader_input, base_model=None, is_training=True, args=None):
    """
        given the base model, reader_input
        return the output tensors
    """

    if is_training:
        src_ids, pos_ids, sent_ids, input_mask, start_positions, end_positions = reader_input
    else:
        src_ids, pos_ids, sent_ids, input_mask, unique_id = reader_input

    enc_out = base_model.final_word_representation
    logits = fluid.layers.fc(
        input=enc_out,
        size=2,
        num_flatten_dims=2,
        param_attr=fluid.ParamAttr(
            name="cls_squad_out_w",
            initializer=fluid.initializer.TruncatedNormal(scale=0.02)),
        bias_attr=fluid.ParamAttr(
            name="cls_squad_out_b", initializer=fluid.initializer.Constant(0.)))

    logits = fluid.layers.transpose(x=logits, perm=[2, 0, 1])
    start_logits, end_logits = fluid.layers.unstack(x=logits, axis=0)

    batch_ones = fluid.layers.fill_constant_batch_size_like(
        input=start_logits, dtype='int64', shape=[1], value=1)
    num_seqs = fluid.layers.reduce_sum(input=batch_ones)

    output_tensors = {}
    output_tensors['start_logits'] = start_logits
    output_tensors['end_logits'] = end_logits
    output_tensors['num_seqs'] = num_seqs
    if is_training:
        output_tensors['start_positions'] = start_positions
        output_tensors['end_positions'] = end_positions

    else:
        output_tensors['unique_id'] = unique_id

    return output_tensors


RawResult = collections.namedtuple("RawResult",
                                   ["unique_id", "start_logits", "end_logits"])


def postprocess(fetch_results):
    np_unique_ids= fetch_results['unique_id']
    np_start_logits= fetch_results['start_logits']
    np_end_logits= fetch_results['end_logits']
    ret = []
    for idx in range(np_unique_ids.shape[0]):                                                                                                                                          
        if np_unique_ids[idx] < 0:
            continue
        unique_id = int(np_unique_ids[idx])
        start_logits = [float(x) for x in np_start_logits[idx].flat]
        end_logits = [float(x) for x in np_end_logits[idx].flat]
        ret.append(
            RawResult(
                unique_id=unique_id,
                start_logits=start_logits,
                end_logits=end_logits))
    return ret

    
def global_postprocess(pred_buf, processor, mtl_args, task_args):
    if not os.path.exists(mtl_args.checkpoint_path):
        os.makedirs(mtl_args.checkpoints)
    output_prediction_file = os.path.join(mtl_args.checkpoint_path, "predictions.json")
    output_nbest_file = os.path.join(mtl_args.checkpoint_path, "nbest_predictions.json")
    output_null_log_odds_file = os.path.join(mtl_args.checkpoint_path, "null_odds.json")

    processor.write_predictions(pred_buf, task_args.n_best_size, task_args.max_answer_length,
                                task_args.do_lower_case, output_prediction_file,
                                output_nbest_file, output_null_log_odds_file,
                                task_args.with_negative,
                                task_args.null_score_diff_threshold, task_args.verbose)