trainer.py 29.3 KB
Newer Older
X
xixiaoyao 已提交
1
# -*- coding: utf-8 -*-
X
xixiaoyao 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

X
xixiaoyao 已提交
16
from __future__ import print_function
X
xixiaoyao 已提交
17 18 19
import os
import json
from paddle import fluid
X
xixiaoyao 已提交
20
import time
W
wangxiao1021 已提交
21
import sys
X
xixiaoyao 已提交
22
import numpy as np
X
xixiaoyao 已提交
23
import paddlepalm.utils.basic_helper as helper
X
xixiaoyao 已提交
24
from paddlepalm.utils import reader_helper, saver
W
wangxiao1021 已提交
25
from paddlepalm.distribute import gpu_dev_count, data_feeder, decode_fake
X
xixiaoyao 已提交
26
# from paddlepalm.default_settings import *
X
xixiaoyao 已提交
27

X
xixiaoyao 已提交
28
DEBUG=False
X
xixiaoyao 已提交
29

X
xixiaoyao 已提交
30

X
xixiaoyao 已提交
31
class Trainer(object):
W
wangxiao1021 已提交
32 33 34
    """
    The core unit to start a training/predicting session for single task. A trainer is to build computation graph, manage training and evaluation process, achieve model/checkpoint saving and pretrain_model/checkpoint loading.
    """
X
xixiaoyao 已提交
35

W
wangxiao1021 已提交
36 37 38 39 40 41 42 43 44
    def __init__(self, name, mix_ratio=1.0, reuse_head_with=None):
        """Create a new trainer.

        Args:
            name: string. The name of the trainer(training task).
            mix_ratio: sampling weight of this trainer in multi-task learning mode. Default is 1.0.
            reuse_head_with: reuse parameters of task head with another trainer. Default is None, not reuse with others.

        """
X
xixiaoyao 已提交
45 46

        self._name = name
X
xixiaoyao 已提交
47
        self._pred_reader = None
W
wangxiao1021 已提交
48 49
        self._task_head = None
        self._pred_head = None
W
wangxiao1021 已提交
50
      
W
wangxiao1021 已提交
51 52 53 54 55 56 57
        self._train_reader = None
        self._predict_reader = None
        self._train_iterator = None
        self._predict_iterator = None

        self._train_init = False
        self._predict_init = False
W
wangxiao1021 已提交
58 59
        self._train_init_prog = None
        self._pred_init_prog = None
W
wangxiao1021 已提交
60 61

        self._check_save = lambda: False
X
xixiaoyao 已提交
62

X
xixiaoyao 已提交
63
        self._task_reuse_scope = name if reuse_head_with is None else reuse_head_with
X
xixiaoyao 已提交
64 65 66

        self._feeded_var_names = None
        self._target_vars = None
X
xixiaoyao 已提交
67
        self._predict_vars = None
X
xixiaoyao 已提交
68

X
xixiaoyao 已提交
69 70
        self._num_examples = 0

W
wangxiao1021 已提交
71 72 73 74
        self._multi_task = False
        self._as_auxilary = False
        self._task_id = None

X
xixiaoyao 已提交
75 76 77 78 79
        # training process management
        self._mix_ratio = mix_ratio
        self._expected_train_steps = None
        self._expected_train_epochs = None
        self._steps_pur_epoch = None
W
wangxiao1021 已提交
80
        self._pred_steps_pur_epoch = None
X
xixiaoyao 已提交
81 82 83 84 85 86 87 88 89 90
        self._cur_train_epoch = 0
        self._cur_train_step = 0
        self._train_finish = False

        self._inputname_to_varname = {}
        self._pred_input_name_list = []
        self._pred_input_varname_list = []
        self._pred_fetch_name_list = []
        self._pred_fetch_var_list = []

X
xixiaoyao 已提交
91
        # exe is built when random_init_params called.
X
xixiaoyao 已提交
92
        self._exe = None
X
xixiaoyao 已提交
93 94 95 96 97 98 99

        self._save_protocol = {
            'input_names': 'self._pred_input_name_list',
            'input_varnames': 'self._pred_input_varname_list',
            'fetch_list': 'self._pred_fetch_name_list'}

        self._lock = False
W
wangxiao1021 已提交
100
        self._lock_prog = False
X
xixiaoyao 已提交
101 102
        self._build_forward = False

W
wangxiao1021 已提交
103 104 105
    def build_forward(self, backbone, task_head):
        """
        Build forward computation graph for training, which usually built from input layer to loss node.
X
xixiaoyao 已提交
106

W
wangxiao1021 已提交
107 108 109
        Args:
            backbone: a Backbone object with phase == 'train', which is used to extract multi-level text features, e.g., contextual word embedding and sentence embedding.
            head: a Head object with phase == 'train', which is used to build task specific output layers.
X
xixiaoyao 已提交
110
        
W
wangxiao1021 已提交
111 112 113
        Return:
            loss_var: a Variable object. The computational graph variable(node) of loss.
        """
X
xixiaoyao 已提交
114 115


W
wangxiao1021 已提交
116 117
        self._task_head = task_head
        self._backbone = backbone
X
xixiaoyao 已提交
118 119 120 121 122 123 124 125 126 127 128

        self._build_forward = True
        
        # create reader, task
        # then check i/o across reader, backbone and task_layer
        task_attrs = []
        pred_task_attrs = []

        task_attr_from_reader = helper.encode_inputs(self._task_head.inputs_attrs['reader'], self.name)

        # merge reader input attrs from backbone and task_instances
W
wangxiao1021 已提交
129
        input_names, shape_and_dtypes, name_to_position = reader_helper.merge_input_attrs(backbone.inputs_attr, task_attr_from_reader, insert_taskid=False)
X
xixiaoyao 已提交
130 131 132
        # shapes: [task_id, shapes_of_backbone, shapes_of_inst1, ..., shapes_of_instN]
        self._shape_and_dtypes = shape_and_dtypes
        self._name_to_position = name_to_position
W
wangxiao1021 已提交
133
        self._input_names = input_names
X
xixiaoyao 已提交
134 135 136 137 138 139 140 141 142 143

        if DEBUG:
            print('----- for debug -----')
            print('joint input names:')
            print(joint_input_names)
            print('joint input shape and dtypes:')
            print(joint_shape_and_dtypes)

        input_attrs = [[i, j, k] for i, (j,k) in zip(input_names, shape_and_dtypes)]

W
wangxiao1021 已提交
144 145 146
        train_prog = fluid.Program()
        train_init_prog = fluid.Program()

W
wangxiao1021 已提交
147 148 149 150
        if not self._lock_prog:
            self._train_prog = train_prog
            self._train_init_prog = train_init_prog

W
wangxiao1021 已提交
151
        if not self._lock_prog:
W
wangxiao1021 已提交
152
            with fluid.program_guard(train_prog, train_init_prog):
W
wangxiao1021 已提交
153
                net_inputs = reader_helper.create_net_inputs(input_attrs, is_async=False)
W
wangxiao1021 已提交
154 155
                bb_output_vars = backbone.build(net_inputs)
        else:
W
wangxiao1021 已提交
156
            net_inputs = reader_helper.create_net_inputs(input_attrs, is_async=False)
X
xixiaoyao 已提交
157
            bb_output_vars = backbone.build(net_inputs)
W
wangxiao1021 已提交
158 159 160
        self._net_inputs = net_inputs
        assert sorted(bb_output_vars.keys()) == sorted(backbone.outputs_attr.keys())

X
xixiaoyao 已提交
161 162 163 164 165 166
        task_output_vars = {}
        task_inputs = {'backbone': bb_output_vars}
        task_inputs_from_reader = helper.decode_inputs(net_inputs, self.name)
        task_inputs['reader'] = task_inputs_from_reader

        scope = self.name+'.'
W
wangxiao1021 已提交
167
        if not self._lock_prog:
W
wangxiao1021 已提交
168 169 170 171
            with fluid.program_guard(train_prog, train_init_prog):
                with fluid.unique_name.guard(scope):
                    output_vars = self._build_head(task_inputs, phase='train', scope=scope)
        else:
X
xixiaoyao 已提交
172 173
            with fluid.unique_name.guard(scope):
                output_vars = self._build_head(task_inputs, phase='train', scope=scope)
W
wangxiao1021 已提交
174

X
xixiaoyao 已提交
175 176 177 178 179 180 181
        output_vars = {self.name+'.'+key: val for key, val in output_vars.items()}
        old = len(task_output_vars) # for debug
        task_output_vars.update(output_vars)
        assert len(task_output_vars) - old == len(output_vars) # for debug

        bb_fetches = {k: v.name for k,v in bb_output_vars.items()}
        task_fetches = {k: v.name for k,v in task_output_vars.items()}
X
xixiaoyao 已提交
182
        self._fetches = task_fetches
X
xixiaoyao 已提交
183
        self._fetch_names, self._fetch_list = zip(*self._fetches.items())
W
wangxiao1021 已提交
184
        if not self._lock_prog:
W
wangxiao1021 已提交
185 186 187
            with fluid.program_guard(train_prog, train_init_prog):
                loss_var = fluid.layers.reduce_sum(task_output_vars[self.name+'.loss'])
        else:
X
xixiaoyao 已提交
188
            loss_var = fluid.layers.reduce_sum(task_output_vars[self.name+'.loss'])
X
xixiaoyao 已提交
189

W
wangxiao1021 已提交
190 191 192 193 194
        self._loss_var = loss_var

        if not self._multi_task:
            self._init_exe_prog(for_train=True)

X
xixiaoyao 已提交
195 196
        return loss_var

W
wangxiao1021 已提交
197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215
    def build_predict_forward(self, pred_backbone, pred_head):
        """
        Build computation graph for evaluation and prediction.

        Arguments:
            - pred_backbone: a Backbone object with phase == 'predict'. For evaluating model during training, the predict backbone should keep the same with train backbone.
            - pred_head: a Head object with phase == 'predict'. For evaluating model during training, the predict head should keep the same with train head.
        
        Return:
            - output_vars: dict type. Each value is a computational graph variable(node) argumented by pred_head outputs_attr.
        """
        self._pred_head = pred_head
        self._pred_backbone = pred_backbone
        pred_task_attr_from_reader = helper.encode_inputs(self._pred_head.inputs_attrs['reader'], self.name)

        pred_input_names, pred_shape_and_dtypes, pred_name_to_position = reader_helper.merge_input_attrs(pred_backbone.inputs_attr, pred_task_attr_from_reader, insert_taskid=False)
        pred_input_attrs = [[i, j, k] for i, (j,k) in zip(pred_input_names, pred_shape_and_dtypes)]
        self._pred_shape_and_dtypes = pred_shape_and_dtypes
        self._pred_name_to_position = pred_name_to_position
X
xixiaoyao 已提交
216
        self._pred_input_names = pred_input_names
W
wangxiao1021 已提交
217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243

        pred_prog = fluid.Program()
        self._pred_prog = pred_prog
        pred_init_prog = fluid.Program()
        self._pred_init_prog = pred_init_prog
        with fluid.program_guard(pred_prog, pred_init_prog):
            pred_net_inputs = reader_helper.create_net_inputs(pred_input_attrs)
            pred_bb_output_vars = pred_backbone.build(pred_net_inputs)
            self._pred_net_inputs = pred_net_inputs

        # prepare predict vars for saving inference model
        with fluid.program_guard(pred_prog, pred_init_prog):
            cur_inputs = helper.decode_inputs(pred_net_inputs, self.name)
            self._pred_input_name_list, self._pred_input_varname_list = \
                zip(*[[k, v.name] for k,v in cur_inputs.items()])

            pred_task_inputs = {'backbone': pred_bb_output_vars, 'reader': cur_inputs}
            scope = self.name + '.'
            with fluid.unique_name.guard(scope):
                output_vars = self._build_head(pred_task_inputs, phase='predict', scope=scope)

        if output_vars is not None:
            self._pred_fetch_name_list, self._pred_fetch_list = zip(*output_vars.items())
        else:
            self._pred_fetch_name_list = []
            self._pred_fetch_var_list = []

X
xixiaoyao 已提交
244 245 246 247 248
        # if not self._multi_task:
        self._init_exe_prog(for_train=False)
        self._exe.run(self._pred_init_prog)

        self._predict_vars = output_vars
W
wangxiao1021 已提交
249 250 251 252 253 254 255 256 257 258 259 260 261 262
            
        return output_vars

    def build_backward(self, optimizer, weight_decay=None, use_ema=False, ema_decay=None):
        """
        Build backward computation graph and training strategy.

        Arguments:
            - optimizer: 
            - weight_decay: optional, default is None (disable weight decay).
            - use_ema: optional, default is False. The flag to control whether to apply Exponential Moving Average strategy on parameter updates.
            - ema_decay: optional, default is None. Only works with use_ema == True. Control decay rate of EMA strategy.

        """
X
xixiaoyao 已提交
263
        # build optimizer
W
wangxiao1021 已提交
264 265
        assert self._loss_var is not None and self._train_init_prog is not None, "train graph not foung! You should build_forward first."
        optimizer._set_prog(self._train_prog, self._train_init_prog)
X
xixiaoyao 已提交
266
        with fluid.program_guard(self._train_prog, self._train_init_prog):
W
wangxiao1021 已提交
267
            param_grads = optimizer._build()
X
xixiaoyao 已提交
268 269 270 271 272

            if weight_decay is not None:

                param_list = dict()

W
wangxiao1021 已提交
273
                for param in self._train_prog.global_block().all_parameters():
X
xixiaoyao 已提交
274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298
                    param_list[param.name] = param * 1.0
                    param_list[param.name].stop_gradient = True

                def exclude_from_weight_decay(name):
                    if name.find("layer_norm") > -1:
                        return True
                    bias_suffix = ["_bias", "_b", ".b_0"]
                    for suffix in bias_suffix:
                        if name.endswith(suffix):
                            return True
                    return False

                for param, grad in param_grads:
                    if exclude_from_weight_decay(param.name):
                        continue
                    with param.block.program._optimized_guard(
                        [param, grad]), fluid.framework.name_scope("weight_decay"):
                        updated_param = param - param_list[
                            param.name] * weight_decay * optimizer.get_cur_learning_rate()
                        fluid.layers.assign(output=param, input=updated_param)

            if use_ema:
                ema = fluid.optimizer.ExponentialMovingAverage(ema_decay)
                ema.update()

W
wangxiao1021 已提交
299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315
        self._exe.run(self._train_init_prog)

    def set_as_aux(self):
        """Set the task in this trainer as auxilary task. \nCAUSIOUS: This API only works on multi-task learning mode. Each task is set as target task by default. """
        self._as_auxilary = True

    def fit_reader(self, reader, phase='train'):
        """
        Bind a reader and loaded train/predict data to trainer. 
        
        Args:
            reader: a Reader object. The running phase of the reader should be consistent with `phase` argument of this method.
            phase: running phase. Currently support: train, predict.

        """

        self._check_phase(phase)
W
wangxiao1021 已提交
316 317 318 319
        if phase=='train':
            assert self._shape_and_dtypes is not None, "You need to build_forward or build_predict_head first to prepare input features."
        else:
            assert self._pred_shape_and_dtypes is not None, "You need to build_forward     or build_predict_head first to prepare input features."
W
wangxiao1021 已提交
320 321 322 323 324 325

        batch_size = reader._batch_size

        self._num_epochs = reader.num_epochs
        if phase == 'train':
            self._train_reader = reader
W
wangxiao1021 已提交
326
            self._steps_pur_epoch = reader.num_examples // batch_size
W
wangxiao1021 已提交
327 328 329 330 331 332 333 334 335 336 337 338
            shape_and_dtypes = self._shape_and_dtypes
            name_to_position = self._name_to_position
            if self._task_id is not None:
                self._net_inputs['__task_id'] = self._task_id
            net_inputs = self._net_inputs
            self._train_batch_size = batch_size
            self._num_examples = reader.num_examples
            reader_helper.check_io(self._backbone.inputs_attr, reader.outputs_attr, in_name='backbone', out_name='reader(train)')
            reader_helper.check_io(self._task_head.inputs_attrs['reader'], reader.outputs_attr, in_name='task_head(reader)', out_name='reader(train)')
            reader_helper.check_io(self._task_head.inputs_attrs['backbone'], self._backbone.outputs_attr, in_name='task_head(backbone, train)', out_name='backbone')
        elif phase == 'predict':
            self._predict_reader = reader
W
wangxiao1021 已提交
339
            self._pred_steps_pur_epoch = reader.num_examples // batch_size 
W
wangxiao1021 已提交
340 341 342 343 344 345 346 347 348 349 350
            shape_and_dtypes = self._pred_shape_and_dtypes
            name_to_position = self._pred_name_to_position
            net_inputs = self._pred_net_inputs
            self._predict_batch_size = batch_size
            self._pred_num_examples = reader.num_examples
            reader_helper.check_io(self._pred_backbone.inputs_attr, reader.outputs_attr, in_name='backbone', out_name='reader(predict)')
            reader_helper.check_io(self._pred_head.inputs_attrs['reader'], reader.outputs_attr, in_name='task_head(reader)', out_name='reader(predict)')
            reader_helper.check_io(self._pred_head.inputs_attrs['backbone'], self._pred_backbone.outputs_attr, in_name='task_head(backbone, predict)', out_name='backbone')
        else:
            raise NotImplementedError()
            
X
xixiaoyao 已提交
351 352 353
        print('ok!')

        # merge dataset iterators and create net input vars
W
wangxiao1021 已提交
354 355 356 357 358
        iterator = reader._iterator()
        prefix = self.name

        # merge dataset iterators and create net input vars
        iterator = reader._iterator()
X
xixiaoyao 已提交
359 360 361
        prefix = self.name

        # 对yield出的数据进行runtime检查和适配
W
wangxiao1021 已提交
362 363 364
        iterator_fn = reader_helper.create_iterator_fn(iterator, prefix, shape_and_dtypes, name_to_position, return_type='dict')
        self._raw_iterator_fn = iterator_fn
        feed_batch_process_fn = reader_helper.create_feed_batch_process_fn(net_inputs)
X
xixiaoyao 已提交
365
        if gpu_dev_count > 1:
W
wangxiao1021 已提交
366
            distribute_feeder_fn = data_feeder(iterator_fn, feed_batch_process_fn, phase=phase)
X
xixiaoyao 已提交
367
        else:
W
wangxiao1021 已提交
368
            distribute_feeder_fn = iterator_fn()
X
xixiaoyao 已提交
369

W
wangxiao1021 已提交
370 371 372 373 374 375 376 377
        if phase == 'train':
            self._train_iterator = distribute_feeder_fn
            self._feed_batch_process_fn = feed_batch_process_fn
        elif phase == 'predict':
            self._predict_iterator = distribute_feeder_fn
            self._pred_feed_batch_process_fn = feed_batch_process_fn
        # return distribute_feeder_fn()

W
wangxiao1021 已提交
378

W
wangxiao1021 已提交
379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403
    def load_ckpt(self, model_path):
        """
        load training checkpoint for further training or predicting.

        Args:
            model_path: the path of saved checkpoint/parameters.
        """
        assert self._train_init_prog is not None or self._pred_init_prog is not None, "model graph not built. You should at least build_forward or build_predict_forward to load its checkpoint."

        if self._train_init_prog is not None:
            saver.init_pretraining_params(
                self._exe,
                model_path,
                convert=False,
                main_program=self._train_init_prog,
                strict=True)
        elif self._pred_init_prog is not None:
            saver.init_pretraining_params(
                self._exe,
                model_path,
                convert=False,
                main_program=self._pred_init_prog,
                strict=True)
        else:
            raise Exception("model not found. You should at least build_forward or build_predict_forward to load its checkpoint.")
W
wangxiao1021 已提交
404

W
wangxiao1021 已提交
405 406 407 408 409 410 411 412 413 414 415 416 417 418 419
    def load_predict_model(self, model_path, convert=False):
        """
        load pretrain models(backbone) for training.

        Args:
            model_path: the path of saved pretrained parameters.
        """

        assert self._pred_prog is not None, "training graph not found. You should at least build_forward to load its pretrained parameters."

        saver.init_pretraining_params(
            self._exe,
            model_path,
            convert=convert,
            main_program=self._pred_prog)
W
wangxiao1021 已提交
420 421 422 423 424 425 426 427 428

    def load_pretrain(self, model_path, convert=False):
        """
        load pretrain models(backbone) for training.

        Args:
            model_path: the path of saved pretrained parameters.
        """
        assert self._train_init_prog is not None, "training graph not found. You should at least build_forward to load its pretrained parameters."
X
xixiaoyao 已提交
429 430 431 432

        saver.init_pretraining_params(
            self._exe,
            model_path,
W
wangxiao1021 已提交
433
            convert=convert,
X
xixiaoyao 已提交
434
            main_program=self._train_init_prog)
X
xixiaoyao 已提交
435

W
wangxiao1021 已提交
436
    def set_saver(self, save_path, save_steps, save_type='ckpt'):
W
wangxiao1021 已提交
437 438 439 440 441 442 443
        """
        create a build-in saver into trainer. A saver will automatically save checkpoint or predict model every `save_steps` training steps.

        Args:
            save_path: a string. the path to save checkpoints or predict models.
            save_steps: an integer. the frequency to save models.
            save_type: a string. The type of saved model. Currently support checkpoint(ckpt) and predict model(predict), default is ckpt. If both two types are needed to save, you can set as "ckpt,predict".
X
xixiaoyao 已提交
444

W
wangxiao1021 已提交
445
        """
W
wangxiao1021 已提交
446
        
X
xixiaoyao 已提交
447

X
xixiaoyao 已提交
448 449
        save_type = save_type.split(',')
        if 'predict' in save_type:
W
wangxiao1021 已提交
450
            assert self._pred_head is not None, "Predict head not found! You should build_predict_head first if you want to save predict model."
X
xixiaoyao 已提交
451
            assert save_path is not None and save_steps is not None, 'save_path and save_steps is required to save model.'
W
wangxiao1021 已提交
452
            self._save_predict = True
X
xixiaoyao 已提交
453 454 455
            if not os.path.exists(save_path):
                os.makedirs(save_path)
        else:
W
wangxiao1021 已提交
456
            self._save_predict = False
X
xixiaoyao 已提交
457 458 459

        if 'ckpt' in save_type:
            if save_path is not None and save_steps is not None:
W
wangxiao1021 已提交
460
                self._save_ckpt = True
X
xixiaoyao 已提交
461 462 463 464
                if not os.path.exists(save_path):
                    os.makedirs(save_path)
            else:
                "WARNING: save_path or save_steps is not set, model will not be saved during training."
W
wangxiao1021 已提交
465
                self._save_ckpt = False
X
xixiaoyao 已提交
466
        else:
W
wangxiao1021 已提交
467 468 469 470
            self._save_ckpt = False

        def temp_func():
            if (self._save_predict or self._save_ckpt) and self._cur_train_step % save_steps == 0:
W
wangxiao1021 已提交
471

W
wangxiao1021 已提交
472
                if self._save_predict:
W
wangxiao1021 已提交
473 474
                    self._save(save_path, suffix='pred.step'+str(self._cur_train_step))
                    print('predict model has been saved at '+os.path.join(save_path, 'pred.step'+str(self._cur_train_step)))
W
wangxiao1021 已提交
475
                    sys.stdout.flush()
W
wangxiao1021 已提交
476
                if self._save_ckpt:
W
wangxiao1021 已提交
477 478
                    fluid.io.save_persistables(self._exe, os.path.join(save_path, 'ckpt.step'+str(self._cur_train_step)), self._train_prog)
                    print('checkpoint has been saved at '+os.path.join(save_path, 'ckpt.step'+str(self._cur_train_step)))
W
wangxiao1021 已提交
479
                    sys.stdout.flush()
W
wangxiao1021 已提交
480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495
                return True
            else:
                return False

        self._check_save = temp_func
            
    def train(self, print_steps=5):
        """
        start training.

        Args:
            print_steps: int. Logging frequency of training message, e.g., current step, loss and speed.
        """
        
        iterator = self._train_iterator
        self._distribute_train_prog = fluid.CompiledProgram(self._train_prog).with_data_parallel(loss_name=self._loss_var.name)
X
xixiaoyao 已提交
496 497 498 499 500 501

        time_begin = time.time()
        for feed in iterator:
            rt_outputs = self.train_one_step(feed)

            task_rt_outputs = {k[len(self.name+'.'):]: v for k,v in rt_outputs.items() if k.startswith(self.name+'.')}
W
wangxiao1021 已提交
502
            self._task_head.batch_postprocess(task_rt_outputs)
X
xixiaoyao 已提交
503 504 505 506 507 508 509 510 511 512


            if print_steps > 0 and self._cur_train_step % print_steps == 0:
                loss = rt_outputs[self.name+'.loss']
                loss = np.mean(np.squeeze(loss)).tolist()

                time_end = time.time()
                time_cost = time_end - time_begin

                print("step {}/{} (epoch {}), loss: {:.3f}, speed: {:.2f} steps/s".format(
W
wangxiao1021 已提交
513
                       (self._cur_train_step-1) % self._steps_pur_epoch + 1 , self._steps_pur_epoch, self._cur_train_epoch,
X
xixiaoyao 已提交
514
                       loss, print_steps / time_cost))
W
wangxiao1021 已提交
515
                sys.stdout.flush()
W
wangxiao1021 已提交
516
                time_begin = time.time() 
X
xixiaoyao 已提交
517

W
wangxiao1021 已提交
518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533
            if self._num_epochs is None and not self._multi_task and self._cur_train_step == self._steps_pur_epoch:
                break
        
    def predict(self, output_dir=None, print_steps=1000):
        """
        start predicting.

        Args:
            output_dir: str. The path to save prediction results, default is None. If set as None, the results would output to screen directly. 
            print_steps: int. Logging frequency of predicting message, e.g., current progress and speed.
        """
        iterator = self._predict_iterator
        self._distribute_pred_prog = fluid.CompiledProgram(self._pred_prog).with_data_parallel()

        if output_dir is not None and not os.path.exists(output_dir):
            os.makedirs(output_dir)
X
xixiaoyao 已提交
534

W
wangxiao1021 已提交
535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550
        time_begin = time.time()
        
        cur_predict_step = 0
        for feed in iterator:
            rt_outputs = self.predict_one_batch(feed)
            self._pred_head.batch_postprocess(rt_outputs)

            cur_predict_step += 1

            if print_steps > 0 and cur_predict_step % print_steps == 0:
                time_end = time.time()
                time_cost = time_end - time_begin

                print("batch {}/{}, speed: {:.2f} steps/s".format(
                       cur_predict_step, self._pred_steps_pur_epoch,
                       print_steps / time_cost))
W
wangxiao1021 已提交
551
                sys.stdout.flush()
W
wangxiao1021 已提交
552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567
                time_begin = time.time()

        if self._pred_head.epoch_inputs_attrs:
            reader_outputs = self._predict_reader.get_epoch_outputs()
        else:
            reader_outputs = None

        results = self._pred_head.epoch_postprocess({'reader':reader_outputs}, output_dir=output_dir)
        return results

    def _check_phase(self, phase):
        assert phase in ['train', 'predict'], "Supported phase: train, predict,"

    def _set_multitask(self):
        self._multi_task = True

X
xixiaoyao 已提交
568 569 570
    def _set_nomultitask(self):
        self._multi_task = False

W
wangxiao1021 已提交
571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611
    def _set_task_id(self, task_id):
        self._task_id = task_id

    def _init_exe_prog(self, for_train=True):
        if not self._train_init and not self._predict_init:
            on_gpu = gpu_dev_count > 0
            self._exe = helper.build_executor(on_gpu)

        if for_train:
            assert self._train_prog is not None, "train graph not found! You should build_forward first before you random init parameters."
            self._train_init = True
        else:
            assert self._pred_prog is not None, "predict graph not found! You should build_predict_head first before you random init parameters."
            self._predict_init = True

    # def random_init_params(self):
    #     """
    #     randomly initialize model parameters.
    #     """
    #     
    #     if not self._train_init:
    #         self._init_exe_prog()
    #     
    #     print('random init params...')
    #     self._exe.run(self._train_init_prog)

    def get_one_batch(self, phase='train'):
        self._check_phase(phase)
        if phase == 'train':
            return next(self._train_reader)
        elif phase == 'predict':
            return next(self._predict_reader)
        else:
            raise NotImplementedError()

    def _set_exe(self, exe):
        self._exe = exe

    def _set_dist_train(self, prog):
        self._distribute_train_prog = prog

X
xixiaoyao 已提交
612 613 614
    def _set_dist_pred(self, prog):
        self._distribute_pred_prog = prog

W
wangxiao1021 已提交
615 616 617
    def _set_fetch_list(self, fetch_list):
        self._fetch_list = fetch_list

X
xixiaoyao 已提交
618
    def train_one_step(self, batch):
W
wangxiao1021 已提交
619 620 621 622 623

        exe = self._exe
        distribute_train_prog = self._distribute_train_prog
        fetch_list = self._fetch_list

X
xixiaoyao 已提交
624 625
        if gpu_dev_count > 1:
            feed, mask = batch
W
wangxiao1021 已提交
626 627
            rt_outputs = exe.run(distribute_train_prog, feed=feed, fetch_list=fetch_list)
            num_fakes = decode_fake(len(rt_outputs[0]), mask, self._train_batch_size)
W
wangxiao1021 已提交
628 629 630
            if num_fakes:
                rt_outputs = [i[:-num_fakes] for i in rt_outputs]
        
X
xixiaoyao 已提交
631 632
        else:
            feed = self._feed_batch_process_fn(batch)
W
wangxiao1021 已提交
633
            rt_outputs = exe.run(distribute_train_prog, feed=feed, fetch_list=fetch_list)
X
xixiaoyao 已提交
634 635

        rt_outputs = {k:v for k,v in zip(self._fetch_names, rt_outputs)}
W
wangxiao1021 已提交
636
        self._cur_train_step += 1
W
wangxiao1021 已提交
637
        self._check_save()
W
wangxiao1021 已提交
638
        self._cur_train_epoch = (self._cur_train_step-1) // self._steps_pur_epoch
X
xixiaoyao 已提交
639
        return rt_outputs
W
wangxiao1021 已提交
640 641 642 643

    def predict_one_batch(self, batch):
        if gpu_dev_count > 1:
            feed, mask = batch
X
xixiaoyao 已提交
644
            rt_outputs = self._exe.run(self._distribute_pred_prog, feed=feed, fetch_list=self._pred_fetch_list, use_prune=True)
W
wangxiao1021 已提交
645
            num_fakes = decode_fake(len(rt_outputs[0]), mask, self._predict_batch_size)
W
wangxiao1021 已提交
646 647
            if num_fakes:
                rt_outputs = [i[:-num_fakes] for i in rt_outputs]
W
wangxiao1021 已提交
648 649
        else:
            feed = self._pred_feed_batch_process_fn(batch)
X
xixiaoyao 已提交
650
            rt_outputs = self._exe.run(self._distribute_pred_prog, feed=feed, fetch_list=self._pred_fetch_list, use_prune=True)
W
wangxiao1021 已提交
651 652 653 654 655 656 657

        rt_outputs = {k:v for k,v in zip(self._pred_fetch_name_list, rt_outputs)}
        return rt_outputs

    @property
    def name(self):
        return self._name
W
wangxiao1021 已提交
658
    
W
wangxiao1021 已提交
659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685
    @property
    def num_examples(self):
        return self._num_examples

    @property
    def mix_ratio(self):
        return self._mix_ratio

    @mix_ratio.setter
    def mix_ratio(self, value):
        self._mix_ratio = value

    @property
    def num_epochs(self):
        return self._num_epochs

    @property
    def cur_train_step(self):
        return self._cur_train_step

    @property
    def cur_train_epoch(self):
        return self._cur_train_epoch

    @property
    def steps_pur_epoch(self):
        return self._steps_pur_epoch
X
xixiaoyao 已提交
686

X
xixiaoyao 已提交
687
    def _build_head(self, net_inputs, phase, scope=""):
W
wangxiao1021 已提交
688
        self._check_phase(phase)
X
xixiaoyao 已提交
689 690
        if phase == 'train':
            output_vars = self._task_head.build(net_inputs, scope_name=scope)
W
wangxiao1021 已提交
691
        if phase == 'predict':
X
xixiaoyao 已提交
692
            output_vars = self._pred_head.build(net_inputs, scope_name=scope)
X
xixiaoyao 已提交
693 694
        return output_vars
    
W
wangxiao1021 已提交
695
    def _save(self, save_path, suffix=None):
X
xixiaoyao 已提交
696 697 698 699 700
        # dirpath = save_path.rstrip('/').rstrip('\\') + suffix
        if suffix is not None:
            dirpath = os.path.join(save_path, suffix)
        else:
            dirpath = save_path
X
xixiaoyao 已提交
701 702
        self._pred_input_varname_list = [str(i) for i in self._pred_input_varname_list]

W
wangxiao1021 已提交
703
        prog = self._pred_prog.clone()
X
xixiaoyao 已提交
704 705 706 707 708 709 710 711 712 713
        fluid.io.save_inference_model(dirpath, self._pred_input_varname_list, self._pred_fetch_var_list, self._exe, prog)

        conf = {}
        for k, strv in self._save_protocol.items(): 
            d = None
            v = locals()
            exec('d={}'.format(strv), globals(), v)
            conf[k] = v['d']
        with open(os.path.join(dirpath, '__conf__'), 'w') as writer:
            writer.write(json.dumps(conf, indent=1))
X
xixiaoyao 已提交
714
        print(self._name + ': predict model saved at ' + dirpath)
W
wangxiao1021 已提交
715
        sys.stdout.flush()
X
xixiaoyao 已提交
716

W
wangxiao1021 已提交
717
    
X
xixiaoyao 已提交
718 719 720 721 722 723 724 725 726
    def _load(self, infer_model_path=None):
        if infer_model_path is None:
            infer_model_path = self._save_infermodel_path
        for k,v in json.load(open(os.path.join(infer_model_path, '__conf__'))).items(): 
            strv = self._save_protocol[k]
            exec('{}=v'.format(strv))
        pred_prog, self._pred_input_varname_list, self._pred_fetch_var_list = \
            fluid.io.load_inference_model(infer_model_path, self._exe)
        print(self._name+': inference model loaded from ' + infer_model_path)
W
wangxiao1021 已提交
727
        sys.stdout.flush()
X
xixiaoyao 已提交
728 729
        return pred_prog