ner.py 4.5 KB
Newer Older
W
wangxiao1021 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62
# -*- coding: UTF-8 -*-
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import paddle.fluid as fluid
from paddle.fluid import layers
from paddlepalm.head.base_head import Head
import numpy as np
import os
import math

class SequenceLabel(Head):
    '''
    Sequence label
    '''
    def __init__(self, num_classes, input_dim, dropout_prob=0.0, learning_rate=1e-3,  \
                 param_initializer_range=0.02, phase='train'):
        
        """  
        Args:
            phase: train, eval, pred
            lang: en, ch, ...
        """

        self._is_training = phase == 'train'
        self._hidden_size = input_dim

        self.num_classes = num_classes
    
        self._dropout_prob = dropout_prob if phase == 'train' else 0.0
        self._param_initializer = fluid.initializer.TruncatedNormal(
            scale=param_initializer_range)

        self.learning_rate = learning_rate
        self._preds = []


    @property
    def inputs_attrs(self):
        reader = {}
        bb = {"encoder_outputs": [[-1, -1, -1], 'float32']}
        if self._is_training:
            reader["label_ids"] = [[-1, -1], 'int64']
            reader["seq_lens"] = [[-1], 'int64']
        return {'reader': reader, 'backbone': bb}

    @property
    def outputs_attrs(self):
        if self._is_training:
            return {'loss': [[1], 'float32']}
        else:
X
xixiaoyao 已提交
63
            return {'logits': [[-1, -1, self.num_classes], 'float32']}
W
wangxiao1021 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109

    def build(self, inputs, scope_name=''):
        token_emb = inputs['backbone']['encoder_outputs']
        if self._is_training:
            label_ids = inputs['reader']['label_ids']
            seq_lens = inputs['reader']['seq_lens']

        emission = fluid.layers.fc(
            size=self.num_classes,
            input=token_emb,
            param_attr=fluid.ParamAttr(
                initializer=self._param_initializer,
                regularizer=fluid.regularizer.L2DecayRegularizer(
                    regularization_coeff=1e-4)),
            bias_attr=fluid.ParamAttr(
                name=scope_name+"cls_out_b", initializer=fluid.initializer.Constant(0.)),
            num_flatten_dims=2)

        if self._is_training:

            # compute loss
            crf_cost = fluid.layers.linear_chain_crf(  
                input=emission,
                label=label_ids,
                param_attr=fluid.ParamAttr(
                    name=scope_name+'crfw', learning_rate=self.learning_rate),
                length=seq_lens)

            avg_cost = fluid.layers.mean(x=crf_cost)
            crf_decode = fluid.layers.crf_decoding(
                input=emission,
                param_attr=fluid.ParamAttr(name=scope_name+'crfw'),
                length=seq_lens)

            (precision, recall, f1_score, num_infer_chunks, num_label_chunks,
            num_correct_chunks) = fluid.layers.chunk_eval(
                input=crf_decode,
                label=label_ids,
                chunk_scheme="IOB",
                num_chunk_types=int(math.ceil((self.num_classes - 1) / 2.0)),
                seq_length=seq_lens)
            chunk_evaluator = fluid.metrics.ChunkEvaluator()
            chunk_evaluator.reset()

            return {"loss": avg_cost}
        else:
X
xixiaoyao 已提交
110
            return {"logits": emission} 
W
wangxiao1021 已提交
111 112 113 114 115 116 117 118 119 120

    def batch_postprocess(self, rt_outputs):
        if not self._is_training:
            emission = rt_outputs['emission']
            preds = np.argmax(emission, -1)
            self._preds.extend(preds.tolist())

    def epoch_postprocess(self, post_inputs, output_dir=None):
        # there is no post_inputs needed and not declared in epoch_inputs_attrs, hence no elements exist in post_inputs
        if not self._is_training:
121 122 123 124 125 126
            if output_dir is not None:
                with open(os.path.join(output_dir, 'predictions.json'), 'w') as writer:
                    for p in self._preds:
                        writer.write(str(p)+'\n')
                print('Predictions saved at '+os.path.join(output_dir, 'predictions.json'))
            return self._preds