未验证 提交 f9247ce5 编写于 作者: Z Zhou Wei 提交者: GitHub

fix doc of gradient_clip (#2007)

fix chinese doc of gradient_clip 
上级 e32452ef
......@@ -13,7 +13,7 @@ GradientClipByGlobalNorm
输入的 Tensor列表 不是从该类里传入, 而是默认会选择 ``Program`` 中全部的梯度,如果 ``need_clip`` 不为None,则可以只选择部分参数进行梯度裁剪。
该类需要在 ``optimizer.minimize(grad_clip)`` 进行设置后才能生效,可参看 ``optimizer`` 文档(例如: :ref:`cn_api_fluid_optimizer_SGDOptimizer` )。
该类需要在初始化 ``optimizer`` 时进行设置后才能生效,可参看 ``optimizer`` 文档(例如: :ref:`cn_api_fluid_optimizer_SGDOptimizer` )。
裁剪公式如下:
......
......@@ -13,7 +13,7 @@ GradientClipByNorm
输入的 Tensor 不是从该类里传入, 而是默认会选择 ``Program`` 中全部的梯度,如果 ``need_clip`` 不为None,则可以只选择部分参数进行梯度裁剪。
该类需要在 ``optimizer.minimize(grad_clip)`` 进行设置后才能生效,可参看 ``optimizer`` 文档(例如: :ref:`cn_api_fluid_optimizer_SGDOptimizer` )。
该类需要在初始化 ``optimizer`` 时进行设置后才能生效,可参看 ``optimizer`` 文档(例如: :ref:`cn_api_fluid_optimizer_SGDOptimizer` )。
裁剪公式如下:
......@@ -64,8 +64,8 @@ GradientClipByNorm
# return Parameter.name=="fc_0.w_0"
# clip = fluid.clip.GradientClipByNorm(clip_norm=1.0, need_clip=fileter_func)
sgd_optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.1)
sgd_optimizer.minimize(loss, grad_clip=clip)
sgd_optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.1, grad_clip=clip)
sgd_optimizer.minimize(loss)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
......@@ -101,5 +101,5 @@ GradientClipByNorm
# clip = fluid.clip.GradientClipByNorm(clip_norm=1.0, need_clip=fileter_func)
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=0.1, parameter_list=linear.parameters())
sgd_optimizer.minimize(loss, grad_clip=clip)
\ No newline at end of file
learning_rate=0.1, parameter_list=linear.parameters(), grad_clip=clip)
sgd_optimizer.minimize(loss)
\ No newline at end of file
......@@ -10,7 +10,7 @@ GradientClipByValue
输入的 Tensor 不是从该类里传入, 而是默认会选择 ``Program`` 中全部的梯度,如果 ``need_clip`` 不为None,则可以只选择部分参数进行梯度裁剪。
该类需要在 ``optimizer.minimize(grad_clip)`` 进行设置后才能生效,可参看 ``optimizer`` 文档(例如: :ref:`cn_api_fluid_optimizer_SGDOptimizer` )。
该类需要在初始化 ``optimizer`` 时进行设置后才能生效,可参看 ``optimizer`` 文档(例如: :ref:`cn_api_fluid_optimizer_SGDOptimizer` )。
给定一个 Tensor ``t`` ,该操作将它的值压缩到 ``min`` 和 ``max`` 之间
......@@ -50,8 +50,8 @@ GradientClipByValue
# return Parameter.name=="fc_0.w_0"
# clip = fluid.clip.GradientClipByValue(min=-1, max=1, need_clip=fileter_func)
sgd_optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.1)
sgd_optimizer.minimize(loss, grad_clip=clip)
sgd_optimizer = fluid.optimizer.SGDOptimizer(learning_rate=0.1, grad_clip=clip)
sgd_optimizer.minimize(loss)
place = fluid.CPUPlace()
exe = fluid.Executor(place)
......@@ -87,8 +87,8 @@ GradientClipByValue
# clip = fluid.clip.GradientClipByValue(min=-1, max=1, need_clip=fileter_func)
sgd_optimizer = fluid.optimizer.SGD(
learning_rate=0.1, parameter_list=linear.parameters())
sgd_optimizer.minimize(loss, grad_clip=clip)
learning_rate=0.1, parameter_list=linear.parameters(), grad_clip=clip)
sgd_optimizer.minimize(loss)
......@@ -8,9 +8,9 @@ set_gradient_clip
.. py:function:: paddle.fluid.clip.set_gradient_clip(clip, param_list=None, program=None)
.. warning::
此API对位置使用的要求较高,其必须位于组建网络之后, ``minimize`` 之前,因此在未来版本中可能被删除,故不推荐使用。推荐使用 ``minimize(loss, grad_clip=clip)`` 做梯度裁剪。
此API对位置使用的要求较高,其必须位于组建网络之后, ``minimize`` 之前,因此在未来版本中可能被删除,故不推荐使用。推荐在 ``optimizer`` 初始化时设置梯度裁剪。
有三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
如果 ``set_gradient_clip(clip)`` 与 ``minimize(loss, grad_clip=clip)`` 被同时使用,``set_gradient_clip`` 将不会生效。
如果在 ``optimizer`` 中设置过梯度裁剪,又使用了 ``set_gradient_clip`` ,``set_gradient_clip`` 将不会生效。
给指定参数做梯度裁剪。
......@@ -70,11 +70,12 @@ set_gradient_clip
loss = network()
param_var1 = fluid.default_main_program().global_block().var("fc1_param")
param_var2 = fluid.default_main_program().global_block().var("fc2_param")
clip1 = fluid.clip.GradientClipByValue(min=-1.0, max=1.0), param_list=[param_var1, param_var2])
clip2 = fluid.clip.GradientClipByNorm(clip_norm=1.0), param_list=[param_var1, param_var2])
clip1 = fluid.clip.GradientClipByValue(min=-1.0, max=1.0)
clip2 = fluid.clip.GradientClipByNorm(clip_norm=1.0)
# 设置梯度裁剪策略:clip1
fluid.clip.set_gradient_clip(clip1)
sgd = fluid.optimizer.SGD(learning_rate=1e-3)
# 设置梯度裁剪策略:clip2
sgd.minimize(loss, grad_clip=clip2)
sgd = fluid.optimizer.SGD(learning_rate=1e-3, grad_clip=clip2)
sgd.minimize(loss)
# 有设置冲突时,set_gradient_clip将不会生效,将以clip2的策略进行梯度裁剪
......@@ -8,7 +8,7 @@ ParamAttr
.. py:class:: paddle.fluid.ParamAttr(name=None, initializer=None, learning_rate=1.0, regularizer=None, trainable=True, do_model_average=False)
.. note::
该类中的 ``gradient_clip`` 属性在2.0版本会废弃,推荐使用 ``minimize(loss, grad_clip=clip)`` 做梯度裁剪。共有三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、
该类中的 ``gradient_clip`` 属性在2.0版本会废弃,推荐在初始化 ``optimizer`` 时设置梯度裁剪。共有三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、
:ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
创建一个参数属性对象,用户可设置参数的名称、初始化方式、学习率、正则化规则、是否需要训练、梯度裁剪方式、是否做模型平均等属性。
......
......@@ -8,7 +8,7 @@ WeightNormParamAttr
.. py:class:: paddle.fluid.WeightNormParamAttr(dim=None, name=None, initializer=None, learning_rate=1.0, regularizer=None, trainable=True, do_model_average=False)
.. note::
该类中的 ``gradient_clip`` 属性在2.0版本会废弃,推荐使用 ``minimize(loss, grad_clip=clip)`` 做梯度裁剪。共有三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、
该类中的 ``gradient_clip`` 属性在2.0版本会废弃,推荐在初始化 ``optimizer`` 时设置梯度裁剪。共有三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、
:ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
该类定义了权重归一化(Weight Normalization)的参数。权重归一化可以将神经网络中权重向量的长度与其方向解耦,详细的定义与实现可以参考论文:`Weight Normalization: A Simple Reparameterization to Accelerate Training of Deep Neural Networks <https://arxiv.org/pdf/1602.07868.pdf>`_
......
......@@ -3,7 +3,7 @@
AdadeltaOptimizer
-------------------------------
.. py:class:: paddle.fluid.optimizer.AdadeltaOptimizer(learning_rate, epsilon=1.0e-6, rho=0.95, parameter_list=None, regularization=None, name=None)
.. py:class:: paddle.fluid.optimizer.AdadeltaOptimizer(learning_rate, epsilon=1.0e-6, rho=0.95, parameter_list=None, regularization=None, grad_clip=None, name=None)
**注意:此接口不支持稀疏参数更新。**
......@@ -26,6 +26,8 @@ Adadelta优化器,具体细节可参考论文 `ADADELTA: AN ADAPTIVE LEARNING
- **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、
:ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **name** (str,可选) – 具体用法请参见 :ref:`api_guide_Name` ,一般无需设置,默认值为None。
**代码示例**
......@@ -42,7 +44,7 @@ Adadelta优化器,具体细节可参考论文 `ADADELTA: AN ADAPTIVE LEARNING
optimizer_ops, params_grads = optimizer.minimize(cost)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
为训练网络添加反向和参数优化部分,进而使损失最小化。
......@@ -51,8 +53,6 @@ Adadelta优化器,具体细节可参考论文 `ADADELTA: AN ADAPTIVE LEARNING
- **startup_program** (Program,可选) – 参数所在的startup program。默认值为None,表示 :ref:`cn_api_fluid_default_startup_program` 。
- **parameter_list** (list,可选) – 待更新的Parameter或者Parameter.name组成的列表。默认值为None,表示所有参数均需要更新。
- **no_grad_set** (set,可选) – 不需要更新的Parameter或者Parameter.name组成的集合。默认值为None。
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
......
......@@ -3,7 +3,7 @@
AdagradOptimizer
-------------------------------
.. py:class:: paddle.fluid.optimizer.AdagradOptimizer(learning_rate, epsilon=1e-06, parameter_list=None, regularization=None, name=None, initial_accumulator_value=0.0)
.. py:class:: paddle.fluid.optimizer.AdagradOptimizer(learning_rate, epsilon=1e-06, parameter_list=None, regularization=None, grad_clip=None, name=None, initial_accumulator_value=0.0)
Adaptive Gradient 优化器(自适应梯度优化器,简称Adagrad)可以针对不同参数样本数不平均的问题,自适应地为各个参数分配不同的学习率。
......@@ -28,6 +28,8 @@ Adaptive Gradient 优化器(自适应梯度优化器,简称Adagrad)可以针
- **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、
:ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **name** (str, 可选) - 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None
- **initial_accumulator_value** (float, 可选) - moment累加器的初始值,默认值为0.0
......@@ -52,7 +54,7 @@ Adaptive Gradient 优化器(自适应梯度优化器,简称Adagrad)可以针
feed={"inp": np_inp},
fetch_list=[out.name])
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
......@@ -61,8 +63,6 @@ Adaptive Gradient 优化器(自适应梯度优化器,简称Adagrad)可以针
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合。默认值为None
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
......
......@@ -3,7 +3,7 @@
AdamOptimizer
-------------------------------
.. py:class:: paddle.fluid.optimizer.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, parameter_list=None, regularization=None, name=None, lazy_mode=False)
.. py:class:: paddle.fluid.optimizer.AdamOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, parameter_list=None, regularization=None, grad_clip=None, name=None, lazy_mode=False)
Adam优化器出自 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 的第二节,能够利用梯度的一阶矩估计和二阶矩估计动态调整每个参数的学习率。
......@@ -31,6 +31,8 @@ Adam优化器出自 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 的第二节
- **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、
:ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **name** (str, 可选)- 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None
- **lazy_mode** (bool, 可选) - 设为True时,仅更新当前具有梯度的元素。官方Adam算法有两个移动平均累加器(moving-average accumulators)。累加器在每一步都会更新。在密集模式和稀疏模式下,两条移动平均线的每个元素都会更新。如果参数非常大,那么更新可能很慢。 lazy mode仅更新当前具有梯度的元素,所以它会更快。但是这种模式与原始的算法有不同的描述,可能会导致不同的结果,默认为False
......@@ -122,7 +124,7 @@ Adam优化器出自 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 的第二节
exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
......@@ -131,8 +133,6 @@ Adam优化器出自 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 的第二节
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
......
......@@ -3,7 +3,7 @@
AdamaxOptimizer
-------------------------------
.. py:class:: paddle.fluid.optimizer.AdamaxOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, parameter_list=None, regularization=None, name=None)
.. py:class:: paddle.fluid.optimizer.AdamaxOptimizer(learning_rate=0.001, beta1=0.9, beta2=0.999, epsilon=1e-08, parameter_list=None, regularization=None, grad_clip=None, name=None)
Adamax优化器是参考 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 第7节Adamax优化相关内容所实现的。Adamax算法是基于无穷大范数的 `Adam <https://arxiv.org/abs/1412.6980>`_ 算法的一个变种,使学习率更新的算法更加稳定和简单。
......@@ -33,6 +33,8 @@ Adamax优化器是参考 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 第7节
- **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、
:ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **name** (str, 可选)- 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None
.. note::
......@@ -66,7 +68,7 @@ Adamax优化器是参考 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 第7节
feed={'X': x},
fetch_list=[loss.name])
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
......@@ -75,8 +77,6 @@ Adamax优化器是参考 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 第7节
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成集合,默认值为None
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
......
......@@ -5,7 +5,7 @@ DGCMomentumOptimizer
**注意:该API仅支持【静态图】模式**
.. py:class:: paddle.fluid.optimizer.DGCMomentumOptimizer(learning_rate, momentum, rampup_begin_step, rampup_step=1, sparsity=[0.999], use_nesterov=False, local_grad_clip_norm=None, num_trainers=None, regularization=None, name=None)
.. py:class:: paddle.fluid.optimizer.DGCMomentumOptimizer(learning_rate, momentum, rampup_begin_step, rampup_step=1, sparsity=[0.999], use_nesterov=False, local_grad_clip_norm=None, num_trainers=None, regularization=None, grad_clip=None, name=None)
DGC(深度梯度压缩)Momentum 优化器。原始论文: https://arxiv.org/abs/1712.01887
......@@ -36,6 +36,7 @@ DGC还使用动量因子掩藏(momentum factor masking)和预训练(warm-u
- **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、
:ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- **grad_clip** (GradientClipByNorm, 可选) – 梯度裁剪的策略,``DGCMomentumOptimizer`` 仅支持 :ref:`cn_api_fluid_clip_GradientClipByNorm` 裁剪策略,如果不为该类型,将会抛出类型异常。默认值为None,此时将不进行梯度裁剪。
- **name** (str,可选) - 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None。
**代码示例**
......@@ -109,7 +110,7 @@ DGC还使用动量因子掩藏(momentum factor masking)和预训练(warm-u
详见apply_gradients的示例
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
通过更新parameter_list来添加操作,进而使损失最小化。
......@@ -121,8 +122,6 @@ DGC还使用动量因子掩藏(momentum factor masking)和预训练(warm-u
- **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
- **parameter_list** (list) – 待更新的Variables组成的列表
- **no_grad_set** (set|None) – 应该被无视的Variables集合
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
......
......@@ -3,7 +3,7 @@
DecayedAdagradOptimizer
-------------------------------
.. py:class:: paddle.fluid.optimizer.DecayedAdagradOptimizer(learning_rate, decay=0.95, epsilon=1e-06, parameter_list=None, regularization=None, name=None)
.. py:class:: paddle.fluid.optimizer.DecayedAdagradOptimizer(learning_rate, decay=0.95, epsilon=1e-06, parameter_list=None, regularization=None, grad_clip=None, name=None)
Decayed Adagrad优化器,可以看做是引入了衰减率的 `Adagrad <http://www.jmlr.org/papers/volume12/duchi11a/duchi11a.pdf>`_ 算法,用于解决使用 :ref:`cn_api_fluid_optimizer_AdagradOptimizer` 优化器时,在模型训练中后期学习率急剧下降的问题。
......@@ -26,6 +26,8 @@ Decayed Adagrad优化器,可以看做是引入了衰减率的 `Adagrad <http:/
- **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、
:ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **epsilon** (float,可选) - 保持数值稳定性的短浮点类型值,默认值为1e-06
- **name** (str, 可选)- 该参数供开发人员打印调试信息时使用,具体用法请参见 :ref:`api_guide_Name` ,默认值为None
......@@ -46,7 +48,7 @@ Decayed Adagrad优化器,可以看做是引入了衰减率的 `Adagrad <http:/
optimizer = fluid.optimizer.DecayedAdagradOptimizer(learning_rate=0.2)
optimizer.minimize(cost)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
......@@ -55,8 +57,6 @@ Decayed Adagrad优化器,可以看做是引入了衰减率的 `Adagrad <http:/
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
......
......@@ -54,7 +54,7 @@ Dpsgd优化器是参考CCS16论文 `《Deep Learning with Differential Privacy
feed={'X': x},
fetch_list=[loss.name])
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
......@@ -63,8 +63,6 @@ Dpsgd优化器是参考CCS16论文 `《Deep Learning with Differential Privacy
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成集合,默认值为None
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
......
......@@ -3,7 +3,7 @@
FtrlOptimizer
-------------------------------
.. py:class:: paddle.fluid.optimizer.FtrlOptimizer(learning_rate, l1=0.0, l2=0.0, lr_power=-0.5, parameter_list=None, regularization=None, name=None)
.. py:class:: paddle.fluid.optimizer.FtrlOptimizer(learning_rate, l1=0.0, l2=0.0, lr_power=-0.5, parameter_list=None, regularization=None, grad_clip=None, name=None)
该接口实现FTRL (Follow The Regularized Leader) Optimizer.
......@@ -37,6 +37,8 @@ FTRL 原始论文: ( `https://www.eecs.tufts.edu/~dsculley/papers/ad-click-predi
- **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、
:ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **name** (str, 可选) - 可选的名称前缀,一般无需设置,默认值为None。
抛出异常:
......@@ -75,7 +77,7 @@ FTRL 原始论文: ( `https://www.eecs.tufts.edu/~dsculley/papers/ad-click-predi
**注意:目前, FtrlOptimizer 不支持 sparse parameter optimization。**
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
通过更新parameter_list来添加操作,进而使损失最小化。
......@@ -87,8 +89,6 @@ FTRL 原始论文: ( `https://www.eecs.tufts.edu/~dsculley/papers/ad-click-predi
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
......
......@@ -3,7 +3,7 @@
LambOptimizer
-------------------------------
.. py:class:: paddle.fluid.optimizer.LambOptimizer(learning_rate=0.001, lamb_weight_decay=0.01, beta1=0.9, beta2=0.999, epsilon=1e-06, parameter_list=None, regularization=None, exclude_from_weight_decay_fn=None, name=None)
.. py:class:: paddle.fluid.optimizer.LambOptimizer(learning_rate=0.001, lamb_weight_decay=0.01, beta1=0.9, beta2=0.999, epsilon=1e-06, parameter_list=None, regularization=None, grad_clip=None, exclude_from_weight_decay_fn=None, name=None)
LAMB(Layer-wise Adaptive Moments optimizer for Batching training)优化器
LAMB的优化器旨在不降低精度的前提下增大训练的批量大小,其支持自适应的逐元素更新和精确的分层校正。 更多信息请参考 `Large Batch Optimization for
......@@ -33,6 +33,8 @@ Deep Learning: Training BERT in 76 minutes <https://arxiv.org/pdf/1904.00962.pdf
- **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、
:ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **exclude_from_weight_decay_fn** (function) – 当某个参数作为输入该函数返回值为 ``True`` 时,为该参数跳过权重衰减。
- **name** (str,可选) – 具体用法请参见 :ref:`cn_api_guide_Name` ,一般无需设置,默认值为None。
......@@ -54,7 +56,7 @@ Deep Learning: Training BERT in 76 minutes <https://arxiv.org/pdf/1904.00962.pdf
optimizer.minimize(cost)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
......@@ -63,8 +65,6 @@ Deep Learning: Training BERT in 76 minutes <https://arxiv.org/pdf/1904.00962.pdf
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的的集合,默认值为None
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
......
......@@ -3,7 +3,7 @@
LarsMomentumOptimizer
-------------------------------
.. py:class:: paddle.fluid.optimizer.LarsMomentumOptimizer(learning_rate, momentum, lars_coeff=0.001, lars_weight_decay=0.0005, parameter_list=None, regularization=None, name=None)
.. py:class:: paddle.fluid.optimizer.LarsMomentumOptimizer(learning_rate, momentum, lars_coeff=0.001, lars_weight_decay=0.0005, parameter_list=None, regularization=None, grad_clip=None, name=None)
该接口实现LARS支持的Momentum优化器
......@@ -25,6 +25,8 @@ LarsMomentumOptimizer
- **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、
:ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **name** (str, 可选) - 可选的名称前缀,一般无需设置,默认值为None。
......@@ -50,7 +52,7 @@ LarsMomentumOptimizer
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
通过更新parameter_list来添加操作,进而使损失最小化。
......@@ -62,8 +64,6 @@ LarsMomentumOptimizer
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的的集合,默认值为None
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
......
......@@ -3,7 +3,7 @@
MomentumOptimizer
-------------------------------
.. py:class:: paddle.fluid.optimizer.MomentumOptimizer(learning_rate, momentum, parameter_list=None, use_nesterov=False, regularization=None, name=None)
.. py:class:: paddle.fluid.optimizer.MomentumOptimizer(learning_rate, momentum, parameter_list=None, use_nesterov=False, regularization=None, grad_clip=None, name=None)
该接口实现含有速度状态的Simple Momentum 优化器
......@@ -23,6 +23,8 @@ MomentumOptimizer
- **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、
:ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **name** (str, 可选) - 可选的名称前缀,一般无需设置,默认值为None。
**代码示例**:
......@@ -56,7 +58,7 @@ MomentumOptimizer
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
......@@ -65,8 +67,6 @@ MomentumOptimizer
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
......
......@@ -3,7 +3,7 @@
RMSPropOptimizer
-------------------------------
.. py:class:: paddle.fluid.optimizer.RMSPropOptimizer(learning_rate, rho=0.95, epsilon=1e-06, momentum=0.0, centered=False, parameter_list=None, regularization=None, name=None)
.. py:class:: paddle.fluid.optimizer.RMSPropOptimizer(learning_rate, rho=0.95, epsilon=1e-06, momentum=0.0, centered=False, parameter_list=None, regularization=None, grad_clip=None, name=None)
该接口实现均方根传播(RMSProp)法,是一种未发表的,自适应学习率的方法。原演示幻灯片中提出了RMSProp:[http://www.cs.toronto.edu/~tijmen/csc321/slides/lecture_slides_lec6.pdf]中的第29张。等式如下所示:
......@@ -38,6 +38,8 @@ RMSPropOptimizer
- **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、
:ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **name** (str, 可选) - 可选的名称前缀,一般无需设置,默认值为None。
抛出异常:
......@@ -74,7 +76,7 @@ RMSPropOptimizer
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
......@@ -83,8 +85,6 @@ RMSPropOptimizer
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
......
......@@ -3,7 +3,7 @@
SGDOptimizer
-------------------------------
.. py:class:: paddle.fluid.optimizer.SGDOptimizer(learning_rate, parameter_list=None, regularization=None, name=None)
.. py:class:: paddle.fluid.optimizer.SGDOptimizer(learning_rate, parameter_list=None, regularization=None, grad_clip=None, name=None)
该接口实现随机梯度下降算法的优化器
......@@ -17,6 +17,8 @@ SGDOptimizer
- **regularization** (WeightDecayRegularizer,可选) - 正则化方法。支持两种正则化策略: :ref:`cn_api_fluid_regularizer_L1Decay` 、
:ref:`cn_api_fluid_regularizer_L2Decay` 。如果一个参数已经在 :ref:`cn_api_fluid_ParamAttr` 中设置了正则化,这里的正则化设置将被忽略;
如果没有在 :ref:`cn_api_fluid_ParamAttr` 中设置正则化,这里的设置才会生效。默认值为None,表示没有正则化。
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
- **name** (str, 可选) - 可选的名称前缀,一般无需设置,默认值为None。
......@@ -51,7 +53,7 @@ SGDOptimizer
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
......@@ -60,8 +62,6 @@ SGDOptimizer
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter或者Parameter.name组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter或者Parameter.name组成的集合,默认值为None
- **grad_clip** (GradientClipBase, 可选) – 梯度裁剪的策略,支持三种裁剪策略: :ref:`cn_api_fluid_clip_GradientClipByGlobalNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByNorm` 、 :ref:`cn_api_fluid_clip_GradientClipByValue` 。
默认值为None,此时将不进行梯度裁剪。
返回: tuple(optimize_ops, params_grads),其中optimize_ops为参数优化OP列表;param_grads为由(param, param_grad)组成的列表,其中param和param_grad分别为参数和参数的梯度。该返回值可以加入到 ``Executor.run()`` 接口的 ``fetch_list`` 参数中,若加入,则会重写 ``use_prune`` 参数为True,并根据 ``feed`` 和 ``fetch_list`` 进行剪枝,详见 ``Executor`` 的文档。
返回类型: tuple
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册