未验证 提交 f57b6359 编写于 作者: J Jiabin Yang 提交者: GitHub

Fix/api doc (#1267)

* refine doc for api Program, BackwardStrategy, default_start_up_program

* remove wrong binary char to make file not binary

* delete binary file and push a new file as regular one

* change name back since we delete bianry Program_cn on develop

* refine clone doc

* remove additional gitignore

* refine doc about some info

* refine doc about some info

* refine doc about some info

* refine doc about some info

* refine doc about some info

* remove useless info

* refine doc

* fix code

* fix doc error in Program_cn.rst

*  add code and refine doc

* refine clone doc
上级 f66a8021
......@@ -5,9 +5,16 @@ BackwardStrategy
.. py:class:: paddle.fluid.dygraph.BackwardStrategy
BackwardStrategy是描述反向过程的描述符,现有如下功能:
**注意:该API只在动态图下生效**
``sort_sum_gradient`` 按回溯逆序将梯度加和
BackwardStrategy是描述动态图反向执行的策略,主要功能是定义动态图反向执行时的不同策略
**属性:**
.. py:attribute:: sort_sum_gradient
是否按照前向执行的逆序加和多个梯度,例如当 x_var( :ref:`api_guide_Variable` )作为多个OP(这里以 :ref:`cn_api_fluid_layers_scale` 为例)的输入时,其产生的梯度是否按照前向书写时的
逆序加和,默认为False
**代码示例**
......@@ -16,14 +23,15 @@ BackwardStrategy是描述反向过程的描述符,现有如下功能:
import numpy as np
import paddle.fluid as fluid
from paddle.fluid import FC
x = np.ones([2, 2], np.float32)
with fluid.dygraph.guard():
inputs2 = []
x_var = fluid.dygraph.to_variable(x)
sums_inputs = []
# 这里x_var将作为多个输入scale的输入
for _ in range(10):
inputs2.append(fluid.dygraph.base.to_variable(x))
ret2 = fluid.layers.sums(inputs2)
sums_inputs.append(fluid.layers.scale(x_var))
ret2 = fluid.layers.sums(sums_inputs)
loss2 = fluid.layers.reduce_sum(ret2)
backward_strategy = fluid.dygraph.BackwardStrategy()
backward_strategy.sort_sum_gradient = True
......@@ -32,3 +40,5 @@ BackwardStrategy是描述反向过程的描述符,现有如下功能:
.. _cn_api_fluid_Program:
Program
-------------------------------
.. py:class:: paddle.fluid.Program
**注意:默认情况下,Paddle Fluid内部默认含有** :ref:`cn_api_fluid_default_startup_program` **和** :ref:`cn_api_fluid_default_main_program` **,它们共享参数。** :ref:`cn_api_fluid_default_startup_program` **只运行一次来初始化参数,** :ref:`cn_api_fluid_default_main_program` **在每个mini batch中运行并更新权重。**
Program是Paddle Fluid对于计算图的一种静态描述,使用Program的构造函数可以创建一个Program。Program中包括至少一个 :ref:`api_guide_Block` ,当 :ref:`api_guide_Block` 中存在条件选择的控制流OP(例如 :ref:`cn_api_fluid_layers_While` 等)时,该Program将会含有嵌套着的 :ref:`api_guide_Block` 即控制流外部的 :ref:`api_guide_Block` 将包含着控制流内部的 :ref:`api_guide_Block` ,而嵌套的 :ref:`api_guide_Block` 的元素访问控制将由具体的控制流OP来决定。关于Program具体的结构和包含的类型请参阅 `framework.proto <https://github.com/PaddlePaddle/Paddle/blob/develop/paddle/fluid/framework/framework.proto>`_
一个Program的集合通常包含初始化程序(startup_program)与主程序(main_program),初始化程序是一个包含一些初始化工作的Program,主程序将会包含用来训练的网络结构和变量,在使用同一个 :ref:`api_guide_executor` 执行时他们会共享初始化工作的结果,例如初始化的参数。一个Program的集合可以被用来测试或者训练,被用来训练时, ``Paddle Fluid`` 将会利用所有用户使用的OP和变量来搭建一个训练网络,被用来测试时, 可以通过调用Program相关的接口例如:`clone` 剪去一些与测试无关的OP和变量,比如反向传播的OP和变量。
返回:创建的空的Program
返回值类型:Program
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
main_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(main_program=main_program, startup_program=startup_program):
x = fluid.layers.data(name="x", shape=[-1, 784], dtype='float32')
y = fluid.layers.data(name="y", shape=[-1, 1], dtype='int32')
z = fluid.layers.fc(name="fc", input=x, size=10, act="relu")
# start_up program here will share fc's weight with main program
print("main program is: {}".format(main_program))
print("start up program is: {}".format(startup_program))
.. py:method:: to_string(throw_on_error, with_details=False)
将Program转换为字符串
参数:
- **throw_on_error** (bool) - 是否在没有设置必需字段时抛出异常。
- **with_details** (bool) - 值为true时,打印更多关于变量和参数的信息,如trainable, optimize_attr等
返回: 将Program转换为字符串
返回类型: str
抛出异常: ``ValueError`` - 当 ``throw_on_error == true`` ,当没有设置任何必需的字段时,抛出 ``ValueError`` 。
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
prog = fluid.default_main_program()
a = fluid.layers.data(name="X", shape=[2,3], dtype="float32", append_batch_size=False)
c = fluid.layers.fc(a, size=3)
prog_string = prog.to_string(throw_on_error=True, with_details=False)
prog_string_with_details = prog.to_string(throw_on_error=False, with_details=True)
print(prog_string)
print("\n =============== with_details =============== \n")
print(prog_string_with_details)
.. py:method:: clone(for_test=False)
**注意:**
**1.** ``Program.clone()`` **方法不会克隆例如** :ref:`cn_api_fluid_io_PyReader` **这样的数据读取相关的部分,这可能会造成的数据读取部分在克隆后丢失**
**2. 此API当** ``for_test=True`` **时将会裁剪部分OP和变量。为防止错误的裁剪,推荐在** :ref:`cn_api_fluid_backward_append_backward` **和执行优化器之前使用** ``clone(for_test=True)`` 。
当 ``for_test=True`` 时创建一个新的、仅包含当前Program前向内容的Program。否则创建一个新的,和当前Program完全相同的Program
有些OP,在训练和测试之间的行为是不同的,比如 :ref:`cn_api_fluid_layers_batch_norm` 。它们有一个属性 ``is_test`` 来控制行为。当 ``for_test=True`` 时,此方法将把它们的 ``is_test`` 属性更改为True。
- 克隆Program用于训练时,将 ``for_test`` 设置为False。
- 克隆Program用于测试时,将 ``for_test`` 设置为True。虽然在这种情况下,如果在使用了优化器之后调用 ``clone`` 我们依旧会对Program当中反向执行以及优化器相关的内容进行自动裁剪,但是,我们强烈建议在使用优化器之前使用 ``clone`` 例如如果使用的是 :ref:`cn_api_fluid_optimizer_Momentum` 可以这样去使用:
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
## 我们推荐在使用 Optimizer前使用clone()接口
test_program = fluid.default_main_program().clone(for_test=True)
optimizer = fluid.optimizer.Momentum(learning_rate=0.01, momentum=0.9)
optimizer.minimize()
参数:
- **for_test** (bool) – 取值为True时,clone方法内部会把operator的属性 ``is_test`` 设置为 True, 并裁剪反向OP和参数优化OP
返回:当 ``for_test=True`` 时返回一个新的、仅包含当前Program前向内容的Program。否则返回一个新的,和当前Program完全相同的Program
返回类型: Program
**代码示例**
注意,Program在clone后的顺序可能不同,这不会影响的训练或测试进程。在下面的示例中,我们提供了一个简单的方法print_prog(Program)来打印程序描述,以确保clone后仍能得到同样的打印结果:
.. code-block:: python
import paddle.fluid as fluid
import six
def print_prog(prog):
for name, value in sorted(six.iteritems(prog.block(0).vars)):
print(value)
for op in prog.block(0).ops:
print("op type is {}".format(op.type))
print("op inputs are {}".format(op.input_arg_names))
print("op outputs are {}".format(op.output_arg_names))
for key, value in sorted(six.iteritems(op.all_attrs())):
if key not in ['op_callstack', 'op_role_var']:
print(" [ attrs: {}: {} ]".format(key, value))
1.克隆一个Program,示例代码如下。
.. code-block:: python
import paddle.fluid as fluid
import six
def print_prog(prog):
for name, value in sorted(six.iteritems(prog.block(0).vars)):
print(value)
for op in prog.block(0).ops:
print("op type is {}".format(op.type))
print("op inputs are {}".format(op.input_arg_names))
print("op outputs are {}".format(op.output_arg_names))
for key, value in sorted(six.iteritems(op.all_attrs())):
if key not in ['op_callstack', 'op_role_var']:
print(" [ attrs: {}: {} ]".format(key, value))
train_program = fluid.Program()
startup_program = fluid.Program()
# ``startup_program`` 被用来执行一些参数初始化工作
# ``main_program`` 被用来容纳网络
with fluid.program_guard(train_program, startup_program):
with fluid.unique_name.guard():
img = fluid.layers.data(name='image', shape=[784])
hidden = fluid.layers.fc(input=img, size=200, act='relu')
hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
loss = fluid.layers.cross_entropy(
input=fluid.layers.fc(hidden, size=10, act='softmax'),
label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
avg_loss = fluid.layers.mean(loss)
test_program = train_program.clone(for_test=False)
print_prog(test_program)
# 由于需要使训练和测试参数共享,我们需要使用训练的 ``startup_program``
# 来代替测试用的 ``startup_program``, 尽管测试的 ``startup_program`` 里面什么也没有。
# 在Paddle Fluid中我们会通过同样的变量名来共享权重.
# 训练和测试程序的所有参数将会拥有同样的名字,这将会使训练和测试程序实现参数的共享,
# 所以我们使用训练程序的 ``startup_program`` .并且由于测试的 ``startup_program`` 什么也没有,
# 因此它是一个新的程序.
with fluid.program_guard(train_program, startup_program):
with fluid.unique_name.guard():
sgd = fluid.optimizer.SGD(learning_rate=1e-3)
sgd.minimize(avg_loss)
2.如果分别运行 train Program 和 test Program,则可以不使用clone。
.. code-block:: python
import paddle.fluid as fluid
import six
def print_prog(prog):
for name, value in sorted(six.iteritems(prog.block(0).vars)):
print(value)
for op in prog.block(0).ops:
print("op type is {}".format(op.type))
print("op inputs are {}".format(op.input_arg_names))
print("op outputs are {}".format(op.output_arg_names))
for key, value in sorted(six.iteritems(op.all_attrs())):
if key not in ['op_callstack', 'op_role_var']:
print(" [ attrs: {}: {} ]".format(key, value))
def network(is_test):
img = fluid.layers.data(name='image', shape=[784])
hidden = fluid.layers.fc(input=img, size=200, act='relu')
hidden = fluid.layers.dropout(hidden, dropout_prob=0.5)
loss = fluid.layers.cross_entropy(
input=fluid.layers.fc(hidden, size=10, act='softmax'),
label=fluid.layers.data(name='label', shape=[1], dtype='int64'))
avg_loss = fluid.layers.mean(loss)
return avg_loss
train_program_2 = fluid.Program()
startup_program_2 = fluid.Program()
test_program_2 = fluid.Program()
with fluid.program_guard(train_program_2, startup_program_2):
with fluid.unique_name.guard():
sgd = fluid.optimizer.SGD(learning_rate=1e-3)
sgd.minimize(avg_loss)
# 不使用测试阶段的启动程序
with fluid.program_guard(test_program_2, fluid.Program()):
with fluid.unique_name.guard():
loss = network(is_test=True)
print(test_program_2)
上边两个代码片段生成和打印的Program是一样的。
.. py:staticmethod:: parse_from_string(binary_str)
通过对 `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_ 的反序列化,转换成Program
参数:
- **binary_str_type** (str) – `protobuf <https://en.wikipedia.org/wiki/Protocol_Buffers>`_ 二进制字符串
返回:反序列化后的 Program
返回类型:Program
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
startup_prog = fluid.Program()
main_prog = fluid.Program()
with fluid.program_guard(startup_prog, main_prog):
x = fluid.layers.data(
name='X', shape=[1000, 784], dtype='float32', append_batch_size=False)
y = fluid.layers.data(
name='Y', shape=[784, 100], dtype='float32', append_batch_size=False)
z = fluid.layers.mul(x=x, y=y)
binary_str = fluid.default_main_program().desc.serialize_to_string()
prog_restored = fluid.default_main_program().parse_from_string(binary_str)
print(fluid.default_main_program())
print(prog_restored)
# 这里打印出的两个Program应该是一模一样的
.. py:attribute:: num_blocks
该Program中的 :ref:`api_guide_Block` 的个数
返回: 该Program中的 :ref:`api_guide_Block` 的个数
返回类型:int
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
prog = fluid.default_main_program()
num_blocks = prog.num_blocks
print(num_blocks)
## 1
## 当前Program中只有一个Block,即全局的Block
.. py:attribute:: random_seed
**注意:必须在相关OP被添加之前设置。例如**
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
prog = fluid.default_main_program()
random_seed = prog.random_seed
x_var = fluid.layers.data(name="X", shape=[3,3], dtype="float32", append_batch_size=False)
# 这里我们必须要在fluid.layers.dropout之前设置random_seed
print(random_seed)
prog.random_seed = 1
z_var = fluid.layers.dropout(x_var, 0.7)
print(prog.random_seed)
程序中随机运算符的默认随机种子。0意味着随机生成随机种子。
返回:该Program中当前正在使用的random seed
返回类型:int64
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
prog = fluid.default_main_program()
random_seed = prog.random_seed
print(random_seed)
prog.random_seed = 1
print(prog.random_seed)
## 0
## 默认的random seed是 0
## 1
## 修改后random seed变成了 1
.. py:method:: global_block()
获取该Program的第一个 :ref:`api_guide_Block` 。
返回:该Program的第一个 :ref:`api_guide_Block`
返回类型::ref:`api_guide_Block`
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
prog = fluid.default_main_program()
gb_block = prog.global_block()
print(gb_block)
##
## idx: 0
## parent_idx: -1
## 打印出了当前全局Block的描述
.. py:method:: block(index)
返回该Program中 , ``index`` 指定的 :ref:`api_guide_Block` 。 ``index`` 类型为int
参数:
- **index** (int) - 需要获取的 :ref:`api_guide_Block` 的index
返回: 该Program中index对应的那个 :ref:`api_guide_Block`
返回类型: :ref:`api_guide_Block`
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
prog = fluid.default_main_program()
block_0 = prog.block(0)
print(block_0)
##
## idx: 0
## parent_idx: -1
## 打印出了0号Block的描述
.. py:method:: current_block()
获取当前 :ref:`api_guide_Block` 。当前 :ref:`api_guide_Block` 是用来添加OP的。
返回: 该Program中用户当前所在的 :ref:`api_guide_Block`
返回类型: :ref:`api_guide_Block`
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
prog = fluid.default_main_program()
current_blk = prog.current_block()
print(current_blk)
##
## idx: 0
## parent_idx: -1
## 打印出了当前Block的描述
.. py:method:: list_vars()
获取当前Program中所有变量。返回值是一个可迭代对象(iterable object)。
返回: Generator 会yield每个Program中的变量
返回类型: iterable 的 :ref:`api_guide_Variable`
**代码示例**
.. code-block:: python
import paddle.fluid as fluid
prog = fluid.default_main_program()
img = fluid.layers.data(name='img', shape=[1,28,28], dtype='float32')
label = fluid.layers.data(name='label', shape=[128,1], dtype='int64')
for var in prog.list_vars():
print(var)
# 这里将会打印出当前Program中所有的Variable
......@@ -10,17 +10,17 @@ default_startup_program
该函数可以获取默认/全局 startup program (启动程序)。
该函数可以获取默认/全局 startup :ref:`cn_api_fluid_Program` (初始化启动程序)。
``fluid.layers`` 中的layer函数会新建参数、readers(读取器)、NCCL句柄作为全局变量。
:ref:`_cn_api_fluid_layers` 中的函数会新建参数或 :ref:`cn_api_paddle_data_reader_reader` (读取器) 或 `NCCL <https://developer.nvidia.com/nccl>`_ 句柄作为全局变量。
startup_program会使用内在的operators(算子)去初始化他们,并由layer函数将这些operators追加到startup program中。
startup_program会使用内在的OP(算子)去初始化他们,并由 :ref:`_cn_api_fluid_layers` 中的函数将这些OP追加到startup :ref:`cn_api_fluid_Program` 中。
该函数将返回默认的或当前的startup_program。用户可以使用 ``fluid.program_guard`` 去切换program
该函数将返回默认的或当前的startup_program。用户可以使用 :ref:`cn_api_fluid_program_guard` 去切换 :ref:`cn_api_fluid_default_startup_program`
返回: startup program
返回: 当前的默认/全局 初始化 :ref:`cn_api_fluid_Program`
返回类型: Program
返回类型: :ref:`cn_api_fluid_Program`
**代码示例:**
......
.. _cn_api_fluid_layers:
=======================
fluid.layers
=======================
......
......@@ -23,6 +23,7 @@ Program
.. _api_guide_Block:
=========
Block
......@@ -56,6 +57,7 @@ Operator
更多内容可参考阅读 `Fluid设计思想 <../../advanced_usage/design_idea/fluid_design_idea.html>`_
.. _api_guide_Variable:
=========
Variable
......
......@@ -22,6 +22,7 @@ In brief:
* :code:`Block` contains descriptions of computation and computational objects. The description of computation is called Operator; the object of computation (or the input and output of Operator) is unified as Tensor. In Fluid, Tensor is represented by 0-leveled `LoD-Tensor <http://paddlepaddle.org/documentation/docs/zh/1.2/user_guides/howto/prepare_data/lod_tensor.html#permalink-4-lod-tensor>`_ .
.. _api_guide_Block_en:
=========
Block
......@@ -55,6 +56,7 @@ This is because some common operations on Tensor may consist of more basic opera
More information can be read for reference. `Fluid Design Idea <../../advanced_usage/design_idea/fluid_design_idea.html>`_
.. _api_guide_Variable_en:
=========
Variable
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册