Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
FluidDoc
提交
f2a6bd9d
F
FluidDoc
项目概览
PaddlePaddle
/
FluidDoc
通知
7
Star
2
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
23
列表
看板
标记
里程碑
合并请求
111
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
F
FluidDoc
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
23
Issue
23
列表
看板
标记
里程碑
合并请求
111
合并请求
111
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
f2a6bd9d
编写于
12月 11, 2018
作者:
T
Tink_Y
提交者:
GitHub
12月 11, 2018
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #473 from tink2123/update_nn_2
Update nn 2
上级
1357f9ea
53aa3df9
变更
8
隐藏空白更改
内联
并排
Showing
8 changed file
with
60 addition
and
285 deletion
+60
-285
doc/fluid/api_cn/clip_cn.rst
doc/fluid/api_cn/clip_cn.rst
+8
-8
doc/fluid/api_cn/executor_cn.rst
doc/fluid/api_cn/executor_cn.rst
+7
-6
doc/fluid/api_cn/fluid_cn.rst
doc/fluid/api_cn/fluid_cn.rst
+6
-6
doc/fluid/api_cn/index_cn.rst
doc/fluid/api_cn/index_cn.rst
+1
-1
doc/fluid/api_cn/metrics_cn.rst
doc/fluid/api_cn/metrics_cn.rst
+34
-17
doc/fluid/api_cn/net_cn.rst
doc/fluid/api_cn/net_cn.rst
+0
-244
doc/fluid/api_cn/nets_cn.rst
doc/fluid/api_cn/nets_cn.rst
+1
-0
doc/fluid/api_cn/optimizer_cn.rst
doc/fluid/api_cn/optimizer_cn.rst
+3
-3
未找到文件。
doc/fluid/api_cn/clip_cn.rst
浏览文件 @
f2a6bd9d
...
...
@@ -108,12 +108,12 @@ GradientClipByNorm
.. code-block:: python
w_param_attrs = ParamAttr(name=None,
initializer=UniformInitializer(low=-1.0, high=1.0, seed=0),
w_param_attrs =
fluid.
ParamAttr(name=None,
initializer=
fluid.initializer.
UniformInitializer(low=-1.0, high=1.0, seed=0),
learning_rate=1.0,
regularizer=L1Decay(1.0),
regularizer=
fluid.regularizer.
L1Decay(1.0),
trainable=True,
clip=GradientClipByNorm(clip_norm=2.0))
clip=
fluid.clip.
GradientClipByNorm(clip_norm=2.0))
y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)
...
...
@@ -147,12 +147,12 @@ GradientClipByValue
.. code-block:: python
w_param_attrs = ParamAttr(name=None,
initializer=UniformInitializer(low=-1.0, high=1.0, seed=0),
w_param_attrs =
fluid.
ParamAttr(name=None,
initializer=
fluid.initializer.
UniformInitializer(low=-1.0, high=1.0, seed=0),
learning_rate=1.0,
regularizer=L1Decay(1.0),
regularizer=
fluid.regualrizer.
L1Decay(1.0),
trainable=True,
clip=GradientClipByValue(-1.0, 1.0))
clip=
fluid.clip.
GradientClipByValue(-1.0, 1.0))
y_predict = fluid.layers.fc(input=x, size=1, param_attr=w_param_attrs)
...
...
doc/fluid/api_cn/executor_cn.rst
浏览文件 @
f2a6bd9d
...
...
@@ -81,10 +81,11 @@ feed map为该program提供输入数据。fetch_list提供program训练结束后
.. code-block:: python
data = layers.data(name='X', shape=[1], dtype='float32')
hidden = layers.fc(input=data, size=10)
layers.assign(hidden, out)
loss = layers.mean(out)
data = fluid.layers.data(name='X', shape=[1], dtype='float32')
out = fluid.layers.create_tensor(dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
fluid.layers.assign(hidden, out)
loss = fluid.layers.mean(out)
adam = fluid.optimizer.Adam()
adam.minimize(loss)
...
...
@@ -93,8 +94,8 @@ feed map为该program提供输入数据。fetch_list提供program训练结束后
cpu = core.CPUPlace()
exe = Executor(cpu)
exe.run(default_startup_program())
exe =
fluid.
Executor(cpu)
exe.run(
fluid.
default_startup_program())
.. code-block:: python
...
...
doc/fluid/api_cn/fluid_cn.rst
浏览文件 @
f2a6bd9d
...
...
@@ -1060,12 +1060,12 @@ name_scope
.. code-block:: python
with name_scope("encoder"):
...
with name_scope("decoder"):
...
with name_scope("attention"):
...
with name_scope("encoder"):
...
with name_scope("decoder"):
...
with name_scope("attention"):
...
...
...
doc/fluid/api_cn/index_cn.rst
浏览文件 @
f2a6bd9d
...
...
@@ -16,7 +16,7 @@ API
io_cn.rst
layers_cn.rst
metrics_cn.rst
net_cn.rst
net
s
_cn.rst
optimizer_cn.rst
param_attr_cn.rst
profiler_cn.rst
...
...
doc/fluid/api_cn/metrics_cn.rst
浏览文件 @
f2a6bd9d
...
...
@@ -208,34 +208,51 @@ https://arxiv.org/abs/1512.02325
1. 根据detectors中的输入和label,计算 true positive 和 false positive
2. 计算map,支持 ‘11 point’ and ‘integral’
参数:
- **input** (Variable) – detection的结果,一个 shape=[M, 6] 的 lodtensor。布局为[label, confidence, xmin, ymin, xmax, ymax]
- **gt_label** (Variable) – ground truth label 的索引,它是一个形状为[N, 1]的lodtensor
- **gt_box** (Variable) – ground truth bounds box (bbox),是一个具有形状的lod张量[N, 4]。布局是[xmin, ymin, xmax, ymax]
- **gt_difficult** (Variable|None) – 指定这个ground truth是否是一个difficult bounding bbox,它可以是一个 shape=[N, 1]的LoDTensor,也可以不被指定。如果设置为None,则表示所有的ground truth标签都不是difficult bbox。
- **class_num** (int) – 检测类别的数目
- **background_label** (int) – 背景标签的索引,背景标签将被忽略。如果设置为-1,则所有类别将被考虑,默认为0。
- **overlap_threshold** (float) – 判断真假阳性的阈值,默认为0.5
- **evaluate_difficult** (bool) – 是否考虑 difficult ground truth 进行评价,默认为 True。当 gt_difficult 为 None 时,这个参数不起作用。
- **ap_version** (string) – 平均精度的计算方法,必须是 "integral" 或 "11point"。详情请查看 https://sanchom.wordpress.com/tag/averageprecision/。 其中,11point为:11-point 插值平均精度。积分: precision-recall曲线的自然积分。
**代码示例**
.. code-block:: python
pred = fluid.layers.fc(input=data, size=1000, act="tanh")
batch_map = layers.detection_map(
input,
label,
class_num,
background_label,
overlap_threshold=overlap_threshold,
evaluate_difficult=evaluate_difficult,
ap_version=ap_version)
metric = fluid.metrics.DetectionMAP()
for data in train_reader():
loss, preds, labels = exe.run(fetch_list=[cost, batch_map])
batch_size = data[0]
metric.update(value=batch_map, weight=batch_size)
numpy_map = metric.eval()
exe = fluid.Executor(place)
map_evaluator = fluid.Evaluator.DetectionMAP(input,
gt_label, gt_box, gt_difficult)
cur_map, accum_map = map_evaluator.get_map_var()
fetch = [cost, cur_map, accum_map]
for epoch in PASS_NUM:
map_evaluator.reset(exe)
for data in batches:
loss, cur_map_v, accum_map_v = exe.run(fetch_list=fetch)
在上述例子中:
"cur_map_v" 是当前 mini-batch 的 mAP
"accum_map_v" 是一个 pass 的 mAP累加和
.. py:method:: get_map_var()
返回:当前 mini-batch 的 mAP 变量,和跨 mini-batch 的 mAP 累加和
.. py:methord:: reset(executor, reset_program=None)
在指定 batch 的每一 pass/user 开始时重置度量状态。
参数:
- **executor** (Executor) – 执行reset_program的执行程序
- **reset_program** (Program|None) – 单一 program 的 reset 过程。如果设置为 None,将创建一个 program
...
...
doc/fluid/api_cn/net_cn.rst
已删除
100644 → 0
浏览文件 @
1357f9ea
#################
fluid.nets
#################
.. _cn_api_fluid_nets_glu:
glu
>>>>
.. py:function:: paddle.fluid.nets.glu(input, dim=-1)
T
he Gated Linear Units(GLU)由切分(split),sigmoid激活函数和按元素相乘组成。沿着给定维将input拆分成两个大小相同的部分,a和b,计算如下:
.. math::
GLU(a,b) = a\bigotimes \sigma (b)
参考论文: `Language Modeling with Gated Convolutional Networks <https://arxiv.org/pdf/1612.08083.pdf>`_
参数:
- **input** (Variable) - 输入变量,张量或者LoDTensor
- **dim** (int) - 拆分的维度。如果 :math:`dim<0`,拆分的维为 :math:`rank(input)+dim`。默认为-1
返回:变量 —— 变量的大小为输入的一半
返回类型:变量(Variable)
**代码示例:**
.. code-block:: python
data = fluid.layers.data(name="words", shape=[3, 6, 9], dtype="float32")
output = fluid.nets.glu(input=data, dim=1) # shape of output: [3, 3, 9]
英文版API文档: :ref:`api_fluid_nets_glu`
.. _cn_api_fluid_nets_img_conv_group:
img_conv_group
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
.. py:function:: paddle.fluid.nets.img_conv_group(input, conv_num_filter, pool_size, conv_padding=1, conv_filter_size=3, conv_act=None, param_attr=None, conv_with_batchnorm=False, conv_batchnorm_drop_rate=0.0, pool_stride=1, pool_type='max', use_cudnn=True)
Image Convolution Group由Convolution2d,BatchNorm,DropOut和Pool2d组成。根据输入参数,img_conv_group将使用Convolution2d,BatchNorm,DropOut对Input进行连续计算,并将最后一个结果传递给Pool2d。
参数:
- **input** (Variable) - 具有[N,C,H,W]格式的输入图像。
- **conv_num_filter** (list | tuple) - 表示该组的过滤器数。
- **pool_size** (int | list | tuple) - ``Pool2d Layer`` 池的大小。如果pool_size是列表或元组,则它必须包含两个整数(pool_size_H,pool_size_W)。否则,pool_size_H = pool_size_W = pool_size。
- **conv_padding** (int | list | tuple) - Conv2d Layer的 ``padding`` 大小。如果 ``padding`` 是列表或元组,则其长度必须等于 ``conv_num_filter`` 的长度。否则,所有Conv2d图层的 ``conv_padding`` 都是相同的。默认1。
- **conv_filter_size** (int | list | tuple) - 过滤器大小。如果filter_size是列表或元组,则其长度必须等于 ``conv_num_filter`` 的长度。否则,所有Conv2d图层的 ``conv_filter_size`` 都是相同的。默认3。
- **conv_act** (str) - ``Conv2d Layer`` 的激活类型, ``BatchNorm`` 后面没有。默认值:无。
- **param_attr** (ParamAttr) - Conv2d层的参数。默认值:无
- **conv_with_batchnorm** (bool | list) - 表示在 ``Conv2d Layer`` 之后是否使用 ``BatchNorm`` 。如果 ``conv_with_batchnorm`` 是一个列表,则其长度必须等于 ``conv_num_filter`` 的长度。否则, ``conv_with_batchnorm`` 指示是否所有Conv2d层都遵循 ``BatchNorm``。默认为False。
- **conv_batchnorm_drop_rate** (float | list) - 表示 ``BatchNorm`` 之后的 ``Dropout Layer`` 的 ``rop_rate`` 。如果 ``conv_batchnorm_drop_rate`` 是一个列表,则其长度必须等于 ``conv_num_filter`` 的长度。否则,所有 ``Dropout Layers`` 的 ``drop_rate`` 都是 ``conv_batchnorm_drop_rate`` 。默认值为0.0。
- **pool_stride** (int | list | tuple) - ``Pool2d`` 层的汇集步幅。如果 ``pool_stride`` 是列表或元组,则它必须包含两个整数(pooling_stride_H,pooling_stride_W)。否则,pooling_stride_H = pooling_stride_W = pool_stride。默认1。
- **pool_type** (str) - 池化类型可以是最大池化的 ``max`` 和平均池化的 ``avg`` 。默认max。
- **use_cudnn** (bool) - 是否使用cudnn内核,仅在安装cudnn库时才有效。默认值:True
返回: 使用Convolution2d进行串行计算后的最终结果,BatchNorm,DropOut和Pool2d。
返回类型: 变量(Variable)。
**代码示例**
.. code-block:: python
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
conv_pool = fluid.nets.img_conv_group(input=img,
num_channels=3,
conv_padding=1,
conv_num_filter=[3, 3],
conv_filter_size=3,
conv_act="relu",
pool_size=2,
pool_stride=2)
英文版API文档: :ref:`api_fluid_nets_img_conv_group`
.. _cn_api_fluid_nets_scaled_dot_product_attention:
scaled_dot_product_attention
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
.. py:function:: paddle.fluid.nets.scaled_dot_product_attention(queries, keys, values, num_heads=1, dropout_rate=0.0)
点乘attention运算。
attention运算机制可以被视为将查询和一组键值对映射到输出。 将输出计算为值的加权和,其中分配给每个值的权重由查询的兼容性函数(此处的点积)与对应的密钥计算。
可以通过(batch)矩阵乘法实现点积attention运算,如下所示:
.. math::
Attention(Q, K, V)= softmax(QK^\mathrm{T})V
请参阅 `Attention Is All You Need <https://arxiv.org/pdf/1706.03762.pdf>`_
参数:
- **queries** (Variable) - 输入变量,应为3-D Tensor。
- **keys** (Variable) - 输入变量,应为3-D Tensor。
- **values** (Variable) - 输入变量,应为3-D Tensor。
- **num_heads** (int) - 计算缩放点积attention运算的head数。默认值:1。
- **dropout_rate** (float) - 降低attention的dropout率。默认值:0.0。
返回: 通过multi-head来缩放点积attention运算的三维张量。
返回类型: 变量(Variable)。
抛出异常:
- ``ValueError`` - 如果输入查询键,值不是3-D Tensor会报错。
.. note::
当num_heads> 1时,分别学习三个线性投影,以将输入查询,键和值映射到查询',键'和值'。 查询',键'和值'与查询,键和值具有相同的形状。
当num_heads == 1时,scaled_dot_product_attention没有可学习的参数。
**代码示例**
.. code-block:: python
queries = fluid.layers.data(name="queries",
shape=[3, 5, 9],
dtype="float32",
append_batch_size=False)
queries.stop_gradient = False
keys = fluid.layers.data(name="keys",
shape=[3, 6, 9],
dtype="float32",
append_batch_size=False)
keys.stop_gradient = False
values = fluid.layers.data(name="values",
shape=[3, 6, 10],
dtype="float32",
append_batch_size=False)
values.stop_gradient = False
contexts = fluid.nets.scaled_dot_product_attention(queries, keys, values)
contexts.shape # [3, 5, 10]
英文版API文档: :ref:`api_fluid_nets_scaled_dot_product_attention`
.. _cn_api_fluid_nets_sequence_conv_pool:
sequence_conv_pool
>>>>>>>>>>>>>>>>>>>
.. py:function:: paddle.fluid.nets.sequence_conv_pool(input, num_filters, filter_size, param_attr=None, act='sigmoid', pool_type='max')
sequence_conv_pool由序列卷积和池化组成
参数:
- **input** (Variable) - sequence_conv的输入,支持变量时间长度输入序列。当前输入为shape为(T,N)的矩阵,T是mini-batch中的总时间步数,N是input_hidden_size
- **num_filters** (int)- 滤波器数
- **filter_size** (int)- 滤波器大小
- **param_attr** (ParamAttr) - Sequence_conv层的参数。默认:None
- **act** (str) - Sequence_conv层的激活函数类型。默认:sigmoid
- **pool_type** (str)- 池化类型。可以是max-pooling的max,average-pooling的average,sum-pooling的sum,sqrt-pooling的sqrt。默认max
返回:序列卷积(Sequence Convolution)和池化(Pooling)的结果
返回类型:变量(Variable)
**代码示例**:
.. code-block:: python
input_dim = len(word_dict)
emb_dim = 128
hid_dim = 512
data = fluid.layers.data( ame="words", shape=[1], dtype="int64", lod_level=1)
emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim], is_sparse=True)
seq_conv = fluid.nets.sequence_conv_pool(input=emb,
num_filters=hid_dim,
filter_size=3,
act="tanh",
pool_type="sqrt")
英文版API文档: :ref:`api_fluid_nets_sequence_conv_pool`
.. _cn_api_fluid_nets_simple_img_conv_pool:
simple_img_conv_pool
>>>>>>>>>>>>>>>>>>>>>>>>>
.. py:function:: paddle.fluid.nets.simple_img_conv_pool(input, num_filters, filter_size, pool_size, pool_stride, pool_padding=0, pool_type='max', global_pooling=False, conv_stride=1, conv_padding=0, conv_dilation=1, conv_groups=1, param_attr=None, bias_attr=None, act=None, use_cudnn=True)
``simple_img_conv_pool`` 由一个Convolution2d和一个Pool2d组成。
参数:
- **input** (Variable) - 输入图像的格式为[N,C,H,W]。
- **num_filters** (int) - ``filter`` 的数量。它与输出的通道相同。
- **filter_size** (int | list | tuple) - 过滤器大小。如果 ``filter_size`` 是列表或元组,则它必须包含两个整数(filter_size_H,filter_size_W)。否则,filter_size_H = filter_size_W = filter_size。
- **pool_size** (int | list | tuple) - Pool2d池化层大小。如果pool_size是列表或元组,则它必须包含两个整数(pool_size_H,pool_size_W)。否则,pool_size_H = pool_size_W = pool_size。
- **pool_stride** (int | list | tuple) - Pool2d池化层步长。如果pool_stride是列表或元组,则它必须包含两个整数(pooling_stride_H,pooling_stride_W)。否则,pooling_stride_H = pooling_stride_W = pool_stride。
- **pool_padding** (int | list | tuple) - Pool2d池化层的padding。如果pool_padding是列表或元组,则它必须包含两个整数(pool_padding_H,pool_padding_W)。否则,pool_padding_H = pool_padding_W = pool_padding。默认值为0。
- **pool_type** (str) - 池化类型可以是 ``max-pooling`` 的 ``max`` 和平均池的 ``avg`` 。默认 ``max`` 。
- **global_pooling** (bool)- 是否使用全局池。如果global_pooling = true,则忽略pool_size和pool_padding。默认为False
- **conv_stride** (int | list | tuple) - conv2d Layer的步长。如果stride是列表或元组,则它必须包含两个整数,(conv_stride_H,conv_stride_W)。否则,conv_stride_H = conv_stride_W = conv_stride。默认值:conv_stride = 1。
- **conv_padding** (int | list | tuple) - conv2d Layer的padding大小。如果padding是列表或元组,则它必须包含两个整数(conv_padding_H,conv_padding_W)。否则,conv_padding_H = conv_padding_W = conv_padding。默认值:conv_padding = 0。
- **conv_dilation** (int | list | tuple) - conv2d Layer的dilation大小。如果dilation是列表或元组,则它必须包含两个整数(conv_dilation_H,conv_dilation_W)。否则,conv_dilation_H = conv_dilation_W = conv_dilation。默认值:conv_dilation = 1。
- **conv_groups** (int) - conv2d Layer的组数。根据Alex Krizhevsky的Deep CNN论文中的分组卷积:当group = 2时,前半部分滤波器仅连接到输入通道的前半部分,而后半部分滤波器仅连接到后半部分输入通道。默认值:groups = 1。
- **param_attr** (ParamAttr | None) - 可学习参数的参数属性或conv2d权重。如果将其设置为None或ParamAttr的一个属性,则conv2d将创建ParamAttr作为param_attr。如果未设置param_attr的初始化,则使用 :math:`Normal(0.0,std)` 初始化参数,并且 ``std`` 为 :math:`(\frac{2.0 }{filter\_elem\_num})^{0.5}` 。默认值:None
- **bias_attr** (ParamAttr | bool | None) - conv2d的bias参数属性。如果设置为False,则不会向输出单元添加bias。如果将其设置为None或ParamAttr的一个属性,则conv2d将创建ParamAttr作为bias_attr。如果未设置bias_attr的初始化程序,则将偏差初始化为零。默认值:None
- **act** (str) - conv2d的激活类型,如果设置为None,则不附加激活。默认值:无。
- **use_cudnn** (bool) - 是否使用cudnn内核,仅在安装cudnn库时才有效。默认值:True。
返回: Convolution2d和Pool2d之后输入的结果。
返回类型: 变量(Variable)
**示例代码**
.. code-block:: python
img = fluid.layers.data(name='img', shape=[1, 28, 28], dtype='float32')
conv_pool = fluid.nets.simple_img_conv_pool(input=img,
filter_size=5,
num_filters=20,
pool_size=2,
pool_stride=2,
act="relu")
英文版API文档: :ref:`api_fluid_nets_simple_img_conv_pool`
doc/fluid/api_cn/nets_cn.rst
浏览文件 @
f2a6bd9d
...
...
@@ -170,6 +170,7 @@ sequence_conv_pool由序列卷积和池化组成
- **param_attr** (ParamAttr) - Sequence_conv层的参数。默认:None
- **act** (str) - Sequence_conv层的激活函数类型。默认:sigmoid
- **pool_type** (str)- 池化类型。可以是max-pooling的max,average-pooling的average,sum-pooling的sum,sqrt-pooling的sqrt。默认max
- **bias_attr** (ParamAttr|bool|None) – sequence_conv偏置的参数属性。如果设置为False,则不会向输出单元添加偏置。如果将参数设置为ParamAttr的None或one属性,sequence_conv将创建ParamAttr作为bias_attr。如果未设置bias_attr的初始化器,则初始化偏差为零。默认值:None。
返回:序列卷积(Sequence Convolution)和池化(Pooling)的结果
...
...
doc/fluid/api_cn/optimizer_cn.rst
浏览文件 @
f2a6bd9d
...
...
@@ -134,7 +134,7 @@ Adamax 更新规则:
optimizer.minimize(cost)
.. note::
目前 ``AdamaxOptimizer`` 不支持 sparse
gradient
目前 ``AdamaxOptimizer`` 不支持 sparse
parameter optimization.
...
...
@@ -231,7 +231,7 @@ Decayed Adagrad Optimizer
optimizer.minimize(cost)
.. note::
``DecayedAdagradOptimizer`` 不支持 sparse
gradient
``DecayedAdagradOptimizer`` 不支持 sparse
parameter optimization
...
...
@@ -302,7 +302,7 @@ TFRTL 原始论文: ( `https://www.eecs.tufts.edu/~dsculley/papers/ad-click-pred
_, params_grads = optimizer.minimize(cost)
.. note::
目前, FtrlOptimizer 不支持 sparse
gradient
目前, FtrlOptimizer 不支持 sparse
parameter optimization
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录