未验证 提交 eb23a814 编写于 作者: S silingtong123 提交者: GitHub

modify the uniform_random_cn.rst (#1580)

Add the description and example of shape tensor supporting int32
上级 a76d1065
...@@ -16,7 +16,7 @@ uniform_random ...@@ -16,7 +16,7 @@ uniform_random
result=[[0.8505902, 0.8397286]] result=[[0.8505902, 0.8397286]]
参数: 参数:
- **shape** (list|tuple|Variable)-输出Tensor的维度,shape类型支持list,tuple,Variable。如果shape类型是list或者tuple,它的元素可以是整数或者形状为[1]的Tensor,其中整数的数据类型为int,Tensor的数据类型为int64。如果shape的类型是Variable,则是1D的Tensor,Tensor的数据类型为int64。 - **shape** (list|tuple|Variable)-输出Tensor的维度,shape类型支持list,tuple,Variable。如果shape类型是list或者tuple,它的元素可以是整数或者形状为[1]的Tensor,其中整数的数据类型为int,Tensor的数据类型为int32或int64。如果shape的类型是Variable,则是1D的Tensor,Tensor的数据类型为int32或int64。
- **dtype** (np.dtype|core.VarDesc.VarType|str,可选) – 输出Tensor的数据类型,支持float32(默认), float64。 - **dtype** (np.dtype|core.VarDesc.VarType|str,可选) – 输出Tensor的数据类型,支持float32(默认), float64。
- **min** (float,可选)-要生成的随机值范围的下限,min包含在范围中。支持的数据类型:float。默认值为-1.0。 - **min** (float,可选)-要生成的随机值范围的下限,min包含在范围中。支持的数据类型:float。默认值为-1.0。
- **max** (float,可选)-要生成的随机值范围的上限,max不包含在范围中。支持的数据类型:float。默认值为1.0。 - **max** (float,可选)-要生成的随机值范围的上限,max不包含在范围中。支持的数据类型:float。默认值为1.0。
...@@ -46,16 +46,22 @@ uniform_random ...@@ -46,16 +46,22 @@ uniform_random
# example 2: # example 2:
# attr shape is a list which contains tensor Variable. # attr shape is a list which contains tensor Variable.
dim_1 = fluid.layers.fill_constant([1],"int64",3) dim_1 = fluid.layers.fill_constant([1],"int64",3)
result_2 = fluid.layers.uniform_random(shape=[dim_1, 5]) dim_2 = fluid.layers.fill_constant([1],"int32",5)
result_2 = fluid.layers.uniform_random(shape=[dim_1, dim_2])
# example 3: # example 3:
# attr shape is a Variable, the data type must be int64 # attr shape is a Variable, the data type must be int32 or int64
var_shape = fluid.data(name='var_shape', shape=[2]) var_shape = fluid.data(name='var_shape', shape=[2], dtype="int64")
result_3 = fluid.layers.uniform_random(var_shape) result_3 = fluid.layers.uniform_random(var_shape)
var_shape_int32 = fluid.data(name='var_shape_int32', shape=[2], dtype="int32")
result_4 = fluid.layers.uniform_random(var_shape_int32)
shape_1 = np.array([3,4]).astype("int64")
shape_2 = np.array([3,4]).astype("int32")
exe = fluid.Executor(fluid.CPUPlace()) exe = fluid.Executor(fluid.CPUPlace())
exe.run(startup_program) exe.run(startup_program)
outs = exe.run(train_program, feed = {'var_shape':np.array([3,4])}, fetch_list=[result_1, result_2, result_3]) outs = exe.run(train_program, feed = {'var_shape':shape_1, 'var_shape_int32':shape_2},
fetch_list=[result_1, result_2, result_3, result_4])
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册