未验证 提交 e8d97639 编写于 作者: C Chen Weihang 提交者: GitHub

Revert "Polish seven minimize Chinese APIs' doc of Optimizer (#1200)" (#1457)

This reverts commit a29dcbec.
上级 ada40391
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_fluid_layers_Categorical:
Categorical
-----------
.. autoclass:: paddle.fluid.layers.Categorical
:members:
:inherited-members:
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_fluid_layers_MultivariateNormalDiag:
MultivariateNormalDiag
----------------------
.. autoclass:: paddle.fluid.layers.MultivariateNormalDiag
:members:
:inherited-members:
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_fluid_layers_crop_tensor:
crop_tensor
-----------
.. autofunction:: paddle.fluid.layers.crop_tensor
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_fluid_layers_gather_nd:
gather_nd
---------
.. autofunction:: paddle.fluid.layers.gather_nd
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_fluid_layers_multiclass_nms2:
multiclass_nms2
---------------
.. autofunction:: paddle.fluid.layers.multiclass_nms2
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_fluid_layers_prroi_pool:
prroi_pool
----------
.. autofunction:: paddle.fluid.layers.prroi_pool
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_fluid_layers_scatter_nd:
scatter_nd
----------
.. autofunction:: paddle.fluid.layers.scatter_nd
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_fluid_layers_scatter_nd_add:
scatter_nd_add
--------------
.. autofunction:: paddle.fluid.layers.scatter_nd_add
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_fluid_layers_sequence_topk_avg_pooling:
sequence_topk_avg_pooling
-------------------------
.. autofunction:: paddle.fluid.layers.sequence_topk_avg_pooling
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_fluid_layers_strided_slice:
strided_slice
-------------
.. autofunction:: paddle.fluid.layers.strided_slice
:noindex:
.. THIS FILE IS GENERATED BY `gen_doc.{py|sh}`
!DO NOT EDIT THIS FILE MANUALLY!
.. _api_fluid_optimizer_LookaheadOptimizer:
LookaheadOptimizer
------------------
.. autoclass:: paddle.fluid.optimizer.LookaheadOptimizer
:members:
:inherited-members:
:noindex:
......@@ -51,39 +51,23 @@ Adaptive Gradient 优化器(自适应梯度优化器,简称Adagrad)可以针
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
通过更新parameter_list来添加操作,进而使损失最小化。
返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
该算子相当于backward()和apply_gradients()功能的合体。
返回类型: tuple
参数:
- **loss** (Variable) – 用于优化过程的损失值变量
- **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
- **parameter_list** (list) – 待更新的Variables组成的列表
- **no_grad_set** (set|None) – 应该被无视的Variables集合
- **grad_clip** (GradClipBase|None) – 梯度裁剪的策略
**代码示例**
返回: (optimize_ops, params_grads),分别为附加的算子列表;一个由(param, grad) 变量对组成的列表,用于优化
.. code-block:: python
返回类型: tuple
import numpy as np
import paddle.fluid as fluid
inp = fluid.layers.data(
name="inp", shape=[2, 2], append_batch_size=False)
out = fluid.layers.fc(inp, size=3)
out = fluid.layers.reduce_sum(out)
optimizer = fluid.optimizer.AdagradOptimizer(learning_rate=0.2)
optimizer.minimize(out)
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
exe.run(
feed={"inp": np_inp},
fetch_list=[out.name])
......
......@@ -62,43 +62,21 @@ Adam优化器出自 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 的第二节
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
通过更新parameter_list来添加操作,进而使损失最小化。
返回类型: tuple
该算子相当于backward()和apply_gradients()功能的合体。
**代码示例**:
参数:
- **loss** (Variable) – 用于优化过程的损失值变量
- **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
- **parameter_list** (list) – 待更新的Variables组成的列表
- **no_grad_set** (set|None) – 应该被无视的Variables集合
- **grad_clip** (GradClipBase|None) – 梯度裁剪的策略
.. code-block:: python
返回: (optimize_ops, params_grads),分别为附加的算子列表;一个由(param, grad) 变量对组成的列表,用于优化
import numpy
import paddle.fluid as fluid
x = fluid.layers.data(name='X', shape=[13], dtype='float32')
y = fluid.layers.data(name='Y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
loss = fluid.layers.mean(cost)
adam = fluid.optimizer.AdamOptimizer(learning_rate=0.2)
adam.minimize(loss)
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
exe = fluid.Executor(place)
x = numpy.random.random(size=(10, 13)).astype('float32')
y = numpy.random.random(size=(10, 1)).astype('float32')
exe.run(fluid.default_startup_program())
outs = exe.run(program=fluid.default_main_program(),
feed={'X': x, 'Y': y},
fetch_list=[loss.name])
返回类型: tuple
......
......@@ -65,38 +65,23 @@ Adamax优化器是参考 `Adam论文 <https://arxiv.org/abs/1412.6980>`_ 第7节
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
通过更新parameter_list来添加操作,进而使损失最小化。
返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
该算子相当于backward()和apply_gradients()功能的合体。
**代码示例**:
参数:
- **loss** (Variable) – 用于优化过程的损失值变量
- **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
- **parameter_list** (list) – 待更新的Variables组成的列表
- **no_grad_set** (set|None) – 应该被无视的Variables集合
- **grad_clip** (GradClipBase|None) – 梯度裁剪的策略
.. code-block:: python
返回: (optimize_ops, params_grads),分别为附加的算子列表;一个由(param, grad) 变量对组成的列表,用于优化
返回类型: tuple
import numpy
import paddle.fluid as fluid
data = fluid.layers.data(name='X', shape=[1], dtype='float32')
hidden = fluid.layers.fc(input=data, size=10)
loss = fluid.layers.mean(hidden)
adam = fluid.optimizer.Adamax(learning_rate=0.2)
adam.minimize(loss)
place = fluid.CPUPlace() # fluid.CUDAPlace(0)
exe = fluid.Executor(place)
x = numpy.random.random(size=(10, 1)).astype('float32')
exe.run(fluid.default_startup_program())
outs = exe.run(program=fluid.default_main_program(),
feed={'X': x},
fetch_list=[loss.name])
......
......@@ -45,37 +45,19 @@ Decayed Adagrad优化器,可以看做是引入了衰减率的 `Adagrad <http:/
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
通过更新parameter_list来添加操作,进而使损失最小化。
返回类型: tuple
该算子相当于backward()和apply_gradients()功能的合体。
**代码示例**
参数:
- **loss** (Variable) – 用于优化过程的损失值变量
- **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
- **parameter_list** (list) – 待更新的Variables组成的列表
- **no_grad_set** (set|None) – 应该被无视的Variables集合
- **grad_clip** (GradClipBase|None) – 梯度裁剪的策略
.. code-block:: python
返回: (optimize_ops, params_grads),分别为附加的算子列表;一个由(param, grad) 变量对组成的列表,用于优化
import numpy as np
import paddle.fluid as fluid
inp = fluid.layers.data(
name="inp", shape=[2, 2], append_batch_size=False)
out = fluid.layers.fc(inp, size=3)
out = fluid.layers.reduce_sum(out)
optimizer = fluid.optimizer.DecayedAdagrad(learning_rate=0.2)
optimizer.minimize(out)
np_inp = np.array([[1.0, 2.0], [3.0, 4.0]], dtype=np.float32)
exe = fluid.Executor(fluid.CPUPlace())
exe.run(fluid.default_startup_program())
exe.run(
feed={"inp": np_inp},
fetch_list=[out.name])
返回类型: tuple
......@@ -55,47 +55,21 @@ MomentumOptimizer
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
通过更新parameter_list来添加操作,进而使损失最小化。
返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
该算子相当于backward()和apply_gradients()功能的合体。
返回类型: tuple
参数:
- **loss** (Variable) – 用于优化过程的损失值变量
- **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
- **parameter_list** (list) – 待更新的Variables组成的列表
- **no_grad_set** (set|None) – 应该被无视的Variables集合
- **grad_clip** (GradClipBase|None) – 梯度裁剪的策略
**代码示例**:
返回: (optimize_ops, params_grads),分别为附加的算子列表;一个由(param, grad) 变量对组成的列表,用于优化
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
place = fluid.CPUPlace()
main = fluid.Program()
with fluid.program_guard(main):
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
moment_optimizer = fluid.optimizer.MomentumOptimizer(learning_rate=0.001, momentum=0.9)
moment_optimizer.minimize(avg_cost)
fetch_list = [avg_cost]
train_reader = paddle.batch(
paddle.dataset.uci_housing.train(), batch_size=1)
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for data in train_reader():
exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
返回类型: tuple
......
......@@ -73,47 +73,21 @@ RMSPropOptimizer
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
通过更新parameter_list来添加操作,进而使损失最小化。
返回类型: tuple
该算子相当于backward()和apply_gradients()功能的合体。
**示例代码**
参数:
- **loss** (Variable) – 用于优化过程的损失值变量
- **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
- **parameter_list** (list) – 待更新的Variables组成的列表
- **no_grad_set** (set|None) – 应该被无视的Variables集合
- **grad_clip** (GradClipBase|None) – 梯度裁剪的策略
.. code-block:: python
返回: (optimize_ops, params_grads),分别为附加的算子列表;一个由(param, grad) 变量对组成的列表,用于优化
import paddle
import paddle.fluid as fluid
import numpy as np
place = fluid.CPUPlace()
main = fluid.Program()
with fluid.program_guard(main):
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
rms_optimizer = fluid.optimizer.RMSProp(learning_rate=0.1)
rms_optimizer.minimize(avg_cost)
fetch_list = [avg_cost]
train_reader = paddle.batch(
paddle.dataset.uci_housing.train(), batch_size=1)
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for data in train_reader():
exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
返回类型: tuple
......
......@@ -50,47 +50,21 @@ SGDOptimizer
.. py:method:: minimize(loss, startup_program=None, parameter_list=None, no_grad_set=None, grad_clip=None)
为网络添加反向计算过程,并根据反向计算所得的梯度,更新parameter_list中的Parameters,最小化网络损失值loss。
参数:
- **loss** (Variable) – 需要最小化的损失值变量
- **startup_program** (Program, 可选) – 用于初始化parameter_list中参数的 :ref:`cn_api_fluid_Program` , 默认值为None,此时将使用 :ref:`cn_api_fluid_default_startup_program`
- **parameter_list** (list, 可选) – 待更新的Parameter组成的列表, 默认值为None,此时将更新所有的Parameter
- **no_grad_set** (set, 可选) – 不需要更新的Parameter的集合,默认值为None
- **grad_clip** (GradClipBase, 可选) – 梯度裁剪的策略,静态图模式不需要使用本参数,当前本参数只支持在dygraph模式下的梯度裁剪,未来本参数可能会调整,默认值为None
通过更新parameter_list来添加操作,进而使损失最小化。
返回: (optimize_ops, params_grads),数据类型为(list, list),其中optimize_ops是minimize接口为网络添加的OP列表,params_grads是一个由(param, grad)变量对组成的列表,param是Parameter,grad是该Parameter对应的梯度值
该算子相当于backward()和apply_gradients()功能的合体。
返回类型: tuple
参数:
- **loss** (Variable) – 用于优化过程的损失值变量
- **startup_program** (Program) – 用于初始化在parameter_list中参数的startup_program
- **parameter_list** (list) – 待更新的Variables组成的列表
- **no_grad_set** (set|None) – 应该被无视的Variables集合
- **grad_clip** (GradClipBase|None) – 梯度裁剪的策略
**代码示例**
.. code-block:: python
import paddle
import paddle.fluid as fluid
import numpy as np
place = fluid.CPUPlace()
main = fluid.Program()
with fluid.program_guard(main):
x = fluid.layers.data(name='x', shape=[13], dtype='float32')
y = fluid.layers.data(name='y', shape=[1], dtype='float32')
y_predict = fluid.layers.fc(input=x, size=1, act=None)
cost = fluid.layers.square_error_cost(input=y_predict, label=y)
avg_cost = fluid.layers.mean(cost)
sgd_optimizer = fluid.optimizer.SGD(learning_rate=0.001)
sgd_optimizer.minimize(avg_cost)
返回: (optimize_ops, params_grads),分别为附加的算子列表;一个由(param, grad) 变量对组成的列表,用于优化
fetch_list = [avg_cost]
train_reader = paddle.batch(
paddle.dataset.uci_housing.train(), batch_size=1)
feeder = fluid.DataFeeder(place=place, feed_list=[x, y])
exe = fluid.Executor(place)
exe.run(fluid.default_startup_program())
for data in train_reader():
exe.run(main, feed=feeder.feed(data), fetch_list=fetch_list)
返回类型: tuple
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册